American Association for Cancer Research
Browse

Data from MS4A12 Is a Colon-Selective Store-Operated Calcium Channel Promoting Malignant Cell Processes

Posted on 2023-03-30 - 18:20
Abstract

Using a data mining approach for the discovery of new targets for antibody therapy of colon cancer, we identified MS4A12, a sequence homologue of CD20. We show that MS4A12 is a cell surface protein. Expression analysis and immunohistochemistry revealed MS4A12 to be a colonic epithelial cell lineage gene confined to the apical membrane of colonocytes with strict transcriptional repression in all other normal tissue types. Expression is maintained upon malignant transformation in 63% of colon cancers. Ca2+ flux analyses disclosed that MS4A12 is a novel component of store-operated Ca2+ entry in intestinal cells. Using RNAi-mediated gene silencing, we show that loss of MS4A12 in LoVo colon cancer cells attenuates epidermal growth factor receptor–mediated effects. In particular, proliferation, cell motility, and chemotactic invasion of cells are significantly impaired. Cancer cells expressing MS4A12, in contrast, are sensitized and respond to lower concentrations of epidermal growth factor. In summary, these findings have implications for both the physiology of colonic epithelium as well as for the biology and treatment of colon cancer. [Cancer Res 2008;68(9):3458–66]

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Cancer Research

AUTHORS (5)

Michael Koslowski
Ugur Sahin
Karl Dhaene
Christoph Huber
Özlem Türeci

CATEGORIES

KEYWORDS

need help?