1932

Abstract

Life is a nonequilibrium phenomenon: Metabolism provides a continuous supply of energy that drives nearly all cellular processes. However, very little is known about how much energy different cellular processes use, i.e., their energetic costs. The most direct experimental measurements of these costs involve modulating the activity of cellular processes and determining the resulting changes in energetic fluxes. In this review, we present a flux balance framework to aid in the design and interpretation of such experiments and discuss the challenges associated with measuring the relevant metabolic fluxes. We then describe selected techniques that enable measurement of these fluxes. Finally, we review prior experimental and theoretical work that has employed techniques from biochemistry and nonequilibrium physics to determine the energetic costs of cellular processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-105251
2023-03-10
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-031620-105251.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-105251&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yang X, Heinemann M, Howard J, Huber G, Iyer-Biswas S et al. 2021. PNAS 118:26e2026786118
  2. 2.
    Lynch M, Marinov GK. 2015. PNAS 112:511569095
  3. 3.
    Forrest W, Walker D. 1971. Adv. Microb. Physiol. 5:21374
  4. 4.
    Stouthamer A. 1973. Antonie van Leeuwenhoek 39:154565
  5. 5.
    Waterlow J, Millward D 1989. Energy Transformation in Cells and Organisms: Proceedings of the 10th Conference of the European Society for Comparative Physiology and Biochemistry W Wieser, E Gnaiger 27782. Innsbruck, Austria: Thieme
  6. 6.
    Wieser W, Krumschnabel G. 2001. Biochem. J. 355:238995
  7. 7.
    Smith R, Houlihan D. 1995. J. Comp. Physiol. B 165:293101
  8. 8.
    Buttgereit F, Brand MD. 1995. Biochem. J. 312:116367
  9. 9.
    Brown T, Ugurbil K, Shulman R. 1977. PNAS 74:12555153
  10. 10.
    De la Fuente IM, Cortés JM, Valero E, Desroches M, Rodrigues S, Malaina EA. 2014. PLOS ONE 9:10e108676
  11. 11.
    Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J et al. 2016. Nat. Chem. Biol. 12:748289
  12. 12.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2008. Molecular Biology of the Cell New York: Garland
  13. 13.
    Frick O, Wittmann C. 2005. Microb. Cell Fact. 4:30
  14. 14.
    Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T et al. 2012. Cancer Cell 22:16679
  15. 15.
    Fraenkel DG. 2011. Yeast Intermediary Metabolism Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  16. 16.
    Salway JG. 2016. Metabolism at a Glance Oxford, UK: Wiley-Blackwell
  17. 17.
    Hinkle PC. 2005. Biochim. Biophys. Acta Bioenerget. 1706:1/2111
  18. 18.
    Hinkle PC, Kumar MA, Resetar A, Harris DL. 1991. Biochemistry 30:14357682
  19. 19.
    Brand MD. 1995. Biochemist 16:2024
  20. 20.
    Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. 2017. J. Biol. Chem. 292:177189207
  21. 21.
    Martinez-Reyes I, Chandel NS 2020. Nat. Commun. 11:102
  22. 22.
    Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL, Scott DA. 2012. Pigment Cell Melanoma Res. 25:673239
  23. 23.
    Ferrick DA, Neilson A, Beeson C. 2008. Drug Discov. Today 13:5/626874
  24. 24.
    Thornton W. 1917. Lond. Edinb. Dublin Philos. Mag. J. Sci. 33:194196203
  25. 25.
    Hansen LD, Macfarlane C, McKinnon N, Smith BN, Criddle RS. 2004. Thermochim. Acta 422:15561
  26. 26.
    Kemp RB. 1991. Thermochim. Acta 193:25367
  27. 27.
    Lerchner J, Sartori MR, Volpe POL, Lander N, Mertens F, Vercesi AE. 2019. Anal. Bioanal. Chem. 411:17376368
  28. 28.
    Battley EH. 1992. Biotechnol. Bioeng. 39:1512
  29. 29.
    Song Y, Park JO, Tanner L, Nagano Y, Rabinowitz JD, Shvartsman SY. 2019. Curr. Biol. 29:12R56667
  30. 30.
    Rodenfels J, Sartori P, Golfier S, Nagendra K, Neugebauer KM, Howard J. 2020. Mol. Biol. Cell 31:7511723
  31. 31.
    Buchenberg S, Sittel F, Stock G. 2017. PNAS 114:33E680411
  32. 32.
    Maier T, Schmidt A, Güell M, Kühner S, Gavin AC et al. 2011. Mol. Syst. Biol. 7:511
  33. 33.
    Kresnowati D. 2006. Mol. Syst. Biol. 2:49
  34. 34.
    Divakaruni AS, Brand MD. 2011. Physiology 26:3192205
  35. 35.
    Ellis R, MacDonald I. 1970. Plant Physiol. 46:222732
  36. 36.
    Brown GC. 1992. Biochem. J. 284:113
  37. 37.
    Jacobs N, Jacobs J. 1976. Biochim. Biophys. Acta Bioenerget. 449:119
  38. 38.
    Spinelli JB, Rosen PC, Sprenger HG, Puszynska AM, Mann JL et al. 2021. Science 374:6572122737
  39. 39.
    Yang X, Ha G, Needleman D 2021. eLife 10:e73808
  40. 40.
    Allen JF. 2002. Cell 110:327376
  41. 41.
    James KL, Ríos-Hernández LA, Wofford NQ, Mouttaki H, Sieber JR et al. 2016. mBio 7:4e01208–16
  42. 42.
    Wu KC, Cui JY, Klaassen CD. 2011. Toxicol. Sci. 123:2590600
  43. 43.
    Law RC, Lakhani A, O'Keeffe S, Erşan S, Park JO. 2022. Curr. Opin. Biotechnol. 75:102701
  44. 44.
    Brand MD, Nicholls DG. 2011. Biochem. J. 435:2297312
  45. 45.
    Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. 1996. Mol. Reprod. Dev. Gamete Res. 44:447685
  46. 46.
    Gnaiger E, Méndez G, Hand SC. 2000. PNAS 97:201108085
  47. 47.
    Lopes A, Larsen L, Ramsing N, Løvendahl P, Raty M et al. 2005. Reproduction 130:566979
  48. 48.
    Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. 2017. Annu. Rev. Biochem. 86:277304
  49. 49.
    Allen PS, Thompson RB, Wilman AH. 1997. NMR Biomed. Int. J. 10:843544
  50. 50.
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X et al. 2017. Nature 551:767811518
  51. 51.
    Schmidt CA, Fisher-Wellman KH, Neufer PD. 2021. J. Biol. Chem. 297:101140
  52. 52.
    Bagamery LE, Justman QA, Garner EC, Murray AW. 2020. Curr. Biol. 30:23456378
  53. 53.
    Bernier LP, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. 2020. Nat. Commun. 11:1559
  54. 54.
    Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. 2012. Microb. Cell Fact. 11:122
  55. 55.
    Ferreiro-Vera C, Mata-Granados JM, Priego-Capote F, Quesada-Gomez JM, Luque de Castro MD. 2011. Anal. Bioanal. Chem. 399:31093103
  56. 56.
    Birkenstock T, Liebeke M, Winstel V, Krismer B, Gekeler C et al. 2012. J. Biol. Chem. 287:4288795
  57. 57.
    Duarte IF, Diaz SO, Gil AM. 2014. J. Pharm. Biomed. Anal. 93:1726
  58. 58.
    Koga K, Miura I. 1988. Biochem. Biophys. Res. Commun. 157:3125863
  59. 59.
    Brindle KM. 1988. Biochemistry 27:16618796
  60. 59a.
    Brindle K, Krikler S 1985. Biochim. Biophys. Acta 847:28592
  61. 60.
    Zamboni N. 2011. Curr. Opin. Biotechnol. 22:11038
  62. 61.
    Antoniewicz MR. 2015. J. Ind. Microb. Biotechnol. 42:331725
  63. 62.
    Leighty RW, Antoniewicz MR. 2011. Metab. Eng. 13:674555
  64. 63.
    Cheah YE, Young JD. 2018. Curr. Opin. Biotechnol. 54:8087
  65. 64.
    Yuan J, Bennett BD, Rabinowitz JD. 2008. Nat. Protoc. 3:8132840
  66. 65.
    Zhang L, Shi L, Shen Y, Miao Y, Wei M et al. 2019. Nat. Biomed. Eng. 3:540213
  67. 66.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW et al. 1999. PNAS 96:14823540
  68. 67.
    Alger J, Den Hollander J, Shulman R 1982. Biochemistry 21:12295763
  69. 68.
    Freeman D, Bartlett S, Radda G, Ross B 1983. Biochim. Biophys. Acta Mol. Cell Res. 762:232536
  70. 69.
    Matthews P, Bland J, Gadian D, Radda G. 1981. Biochem. Biophys. Res. Commun. 103:3105259
  71. 70.
    Fischer E, Sauer U. 2005. Nat. Genet. 37:663640
  72. 71.
    Fischer E, Sauer U. 2003. Eur. J. Biochem. 270:588091
  73. 72.
    Van Winden WA, Van Dam JC, Ras C, Kleijn RJ, Vinke JL et al. 2005. FEMS Yeast Res. 5:6/755968
  74. 73.
    Hu F, Chen Z, Zhang L, Shen Y, Wei L, Min W 2015. Angew. Chem. Int. Ed. 54:34982125
  75. 74.
    Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X et al. 2018. Anal. Chem. 90:6373743
  76. 75.
    Beard DA. 2005. PLOS Comput. Biol. 1:4e36
  77. 76.
    Korzeniewski B, Zoladz JA. 2001. Biophys. Chem. 92:1/21734
  78. 77.
    Jin Q, Bethke CM 2002. Biophys. J. 83:41797808
  79. 78.
    Chang I, Heiske M, Letellier T, Wallace D, Baldi P. 2011. PLOS ONE 6:9e14820
  80. 79.
    Imamura H, Nhat KPH, Togawa H, Saito K, Iino R et al. 2009. PNAS 106:371565156
  81. 80.
    Berg J, Hung YP, Yellen G. 2009. Nat. Methods 6:216166
  82. 81.
    Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. 2011. Biotechniques 50:298115
  83. 82.
    Hung YP, Albeck JG, Tantama M, Yellen G. 2011. Cell Metab. 14:454554
  84. 83.
    San Martin A, Ceballo S, Baeza-Lehnert F, Lerchundi R, Valdebenito R et al. 2014. PLOS ONE 9:e85780
  85. 84.
    San Martin A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF. 2013. PLOS ONE 8:2e57712
  86. 85.
    Diaz-Garcia CM, Lahmann C, Martinez-Francois JR, Li B, Koveal D et al. 2019. J. Neurosci. Res. 97:894660
  87. 86.
    Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ et al. 2014. Nat. Commun. 5:3936
  88. 87.
    Mason GF, Behar KL, Rothman DL, Shulman RG. 1992. J. Cereb. Blood Flow Metab. 12:344855
  89. 88.
    Oh S, Lee C, Fu D, Yang W, Li A et al. PNAS 119:17e2117938119
  90. 89.
    Bae J, Zheng J, Zhang H, Foster PJ, Needleman DJ, Vlassak JJ. 2021. Adv. Sci. 8:52003415
  91. 90.
    Hong S, Dechaumphai E, Green CR, Lal R, Murphy AN et al. 2020. Nat. Commun. 11:2982
  92. 91.
    Hur S, Mittapally R, Yadlapalli S, Reddy P, Meyhofer E. 2020. Nat. Commun. 11:2983
  93. 92.
    Braissant O, Wirz D, Göpfert B, Daniels AU. 2010. FEMS Microb. Lett. 303:18
  94. 93.
    Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Weiger R, Waltimo T. 2012. FEMS Microb. Lett. 337:3137
  95. 94.
    Corvec S, Seiler E, Wang L, Moreno MG, Trampuz A. 2020. Anaerobe 66:102282
  96. 95.
    Recht MI, De Bruyker D, Bell AG, Wolkin MV, Peeters E et al. 2008. Anal. Biochem. 377:3339
  97. 96.
    Johannessen EA, Weaver JMR, Bourova L, Svoboda P, Cobbold PH, Cooper JM. 2002. Anal. Chem. 74:9219097
  98. 97.
    Morais FM, Buchholz F, Maskow T 2014. Microbial Biofilms: Methods and Protocols G Donelli 26775. Methods Mol. Biol . Vol. 1147 New York: Springer
  99. 98.
    Whittam R. 1962. Biochem. J. 82:205
  100. 99.
    Rodenfels J, Neugebauer KM, Howard J. 2019. Dev. Cell 48:564658.e6
  101. 100.
    Engl E, Attwell D. 2015. J. Physiol. 593:16341729
  102. 101.
    Bernstein BW, Bamburg JR. 2003. J. Neurosci. 23:116
  103. 102.
    Chen D, Heymann M, Fraden S, Nicastro D, Dogic Z. 2015. Biophys. J. 109:12256273
  104. 103.
    Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. 1998. Nat. Neurosci. 1:3641
  105. 104.
    Mahmoudabadi G, Milo R, Phillips R 2017. PNAS 114:22E432433
  106. 105.
    Li J, Horowitz JM, Gingrich TR, Fakhri N. 2019. Nat. Commun. 10:1666
  107. 106.
    Battle C, Broedersz CP, Fakhri N, Geyer VF, Howard J et al. 2016. Science 352:62856047
  108. 107.
    Tan TH, Watson GA, Chao YC, Li J, Gingrich TR et al. 2021. arXiv:2107.05701 [physics.bio-ph]
  109. 108.
    Song Y, Hyeon C 2021. eLife 10:e70034
  110. 109.
    Lan G, Sartori P, Neumann S, Sourjik V, Tu Y. 2012. Nat. Phys. 8:42228
  111. 110.
    Horowitz J, Gingrich T. 2020. Nat. Phys. 16:1520
  112. 111.
    Fang X, Kruse K, Lu T, Wang J 2019. Rev. Mod. Phys. 91:045004
  113. 112.
    Harada T, Sasa Si 2005. Phys. Rev. Lett. 95:130602
  114. 113.
    Toyabe S, Jiang HR, Nakamura T, Murayama Y, Sano M. 2007. Phys. Rev. E 75:011122
  115. 114.
    Harada T, Sasa Si 2007. Math. Biosci. 207:236586
  116. 115.
    Fodor E, Ahmed WW, Almonacid M, Bussonnier M, Gov NS et al. 2016. Europhys. Lett. 116:030008
  117. 116.
    Bohec P, Tailleur J, van Wijland F, Richert A, Gallet F. 2019. Soft Matter 15:35695266
  118. 117.
    Jones C, Gomez M, Muoio RM, Vidal A, Mcknight RA et al. 2021. Phys. Rev. E 103:032403
  119. 118.
    Nardini C, Fodor E, Tjhung E, van Wijland F, Tailleur J, Cates ME. 2017. Phys. Rev. X 7:021007
  120. 119.
    Muy S, Kundu A, Lacoste D. 2013. J. Chem. Phys. 139:124109
  121. 120.
    Dechant A, Sasa Si 2021. Phys. Rev. X 11:041061
  122. 121.
    Gingrich TR, Rotskoff GM, Horowitz JM. 2017. J. Phys. A Math. Theor. 50:184004
  123. 122.
    Barato AC, Seifert U. 2015. Phys. Rev. Lett. 114:158101
  124. 123.
    Wang J. 2015. Adv. Phys. 64:11137
  125. 124.
    Schavemaker PE, Lynch M 2022. eLife 11:e77266
  126. 125.
    Basan M, Hui S, Okano H, Zhang Z, Shen Y et al. 2015. Nature 528:758099104
  127. 126.
    Trickovic B, Lynch M 2022. bioRxiv 2022.01.07.475415. https://doi.org/10.1101/2022.01.07.475415
  128. 127.
    Niebel B, Leupold S, Heinemann M. 2019. Nat. Metab. 1:12532
  129. 128.
    Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJ, Sener M et al. 2019. Cell 179:51098111
  130. 129.
    Martin JL, Ishmukhametov R, Spetzler D, Hornung T, Frasch WD. 2018. PNAS 115:22575055
  131. 130.
    Brettel R, Lamprecht I, Schaarschmidt B. 1981. Thermochim. Acta 49:5361
  132. 131.
    Kooragayala K, Gotoh N, Cogliati T, Nellissery J, Kaden TR et al. 2015. Investig. Ophthalmol. Vis. Sci. 56:13842836
  133. 132.
    Neville KE, Bosse TL, Klekos M, Mills JF, Weicksel SE et al. 2018. J. Neurosci. Methods 296:3243
  134. 133.
    Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L et al. 2016. Nat. Protoc. 11:101798816
  135. 134.
    Astrup J, Sorensen PM, Sorensen HR. 1981. Stroke 12:672630
  136. 135.
    Engl E, Jolivet R, Hall CN, Attwell D. 2017. J. Cereb. Blood Flow Metab. 37:395166
  137. 136.
    Robador A, Amend JP, Finkel SE. 2019. Appl. Environ. Microb. 85:15e00968–19
  138. 137.
    Peitzsch M, Kiesel B, Harms H, Maskow T. 2008. Chem. Eng. Process. Process Intensif. 47:610006
  139. 138.
    Tourmente M, Villar-Moya P, Rial E, Roldan ERS 2015. J. Biol. Chem. 290:332061326
  140. 139.
    Dietz MW, van Kampen M, van Griensven MJM, van Mourik S. 1998. Physiol. Zool. 71:214756
  141. 140.
    Nagano Y, Ode KL. 2014. Phys. Biol. 11:046008
  142. 141.
    Ghosh S, Körte A, Serafini G, Yadav V, Rodenfels J. 2022. Semin. Cell Dev. Biol. 138:8393
/content/journals/10.1146/annurev-conmatphys-031620-105251
Loading
/content/journals/10.1146/annurev-conmatphys-031620-105251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error