skip to main content
10.1145/871895.871901acmconferencesArticle/Chapter ViewAbstractPublication PagesicfpConference Proceedingsconference-collections
Article

Structure and interpretation of quantum mechanics: a functional framework

Published:28 August 2003Publication History

ABSTRACT

We present a framework for representing quantum entities in Haskell. States and operators are functional objects, and their semantics is defined --- as far as possible --- independently of the base in the Hilbert space. We construct effectively the tensor states for composed systems, and we present a toy model of quantum circuit toolbox. We conclude that functional languages are right tools for formal computations in quantum physics. The paper focuses mainly on the representation, not on computational problems.

References

  1. D. Deutsch, R. Jozsa, Rapid solution of problems by quantum computer, Proc. Roy. Society, A400, (1992), pp. 553--558.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. Peter Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proc. Symp. on Fundamentals of Computer Science, Los Alamitos, IEEE Press, (1994), pp. 124--134.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L.K. Grover, Quantum Mechanics Helps In Searching For a Needle in a Haystack, Phys. Rev. Lett. 79, (1997), p. 325. Also: L.K. Grover, A fast quantum mechanical algorithm for database search, Proc. 28th ACM Symp. on Theory of Computation, (1996), p. 212.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D.S. Abrams, S. Lloyd, Quantum algorithm providing and exponential speed increase in finding eigenvectors and eigenvalues, Phys. Rev. Lett. 83, (1999), pp. 5162--5165.]]Google ScholarGoogle ScholarCross RefCross Ref
  5. Richard P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, (1982), pp. 467--488.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. John Preskill, Quantum Information and Computation, Lecture Notes for Physics 229, California Institute of Technology, (1988).]]Google ScholarGoogle Scholar
  7. B.M. Boghosian, W. Taylor, Simulating quantum mechanics on a quantum computer, Online preprint quant-ph/9701019, (1997).]]Google ScholarGoogle Scholar
  8. D.G. Cory, et al., Quantum Simulations on a Quantum Computer, Phys. Rev. Lett. 82, (1999), pp. 5381-5384.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. C. Zalka, C. Efficient simulation of quantum systems by quantum computers. Online preprint quant-ph/9603026, (1996).]]Google ScholarGoogle Scholar
  10. S. Lloyd, Universal Quantum Simulators, Science 273, (1996), pp. 1073--1078.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. Shin-Cheng Mu, R. Bird, Functional Quantum Programming, 2nd Asian Workshop on Programming Languages and Systems, KAIST, Dajeaon, Korea, (2001).]]Google ScholarGoogle Scholar
  12. Amr Sabry, Modeling Quantum Computing in Haskell, These proceedings: Haskell Workshop, Uppsala, (2003).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bernhard Omer, Procedural Formalism for Quantum Computing, (1998), available from http://tph.tuwien.ac.at/~oemer|.]]Google ScholarGoogle Scholar
  14. Paolo Zuliani, Quantum Programming, PhD. thesis, St. Cross College, Univ. of Oxford, (2001).]]Google ScholarGoogle Scholar
  15. Julia Wallace, Quantum Computer Simulation - A Review; ver. 2.0, Univ. of Exeter tech. report, (1999), see also the site \verb|www.dcs.ex.ac.uk/~jwallace/simtable.html|, (2002).]]Google ScholarGoogle Scholar
  16. X. Wang, A. Sørensen, K. Mølmer, Multibit Gates for Quantum Computing, Phys. Rev. Lett. 86, pp. 3907--3910, (2001).]]Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Knill, Conventions for Quantum Pseudocode, LANL Rep. LAUR-96-2724.]]Google ScholarGoogle Scholar
  18. P.A.M. Dirac, The Principles of Quantum Mechanics, Clarendon press, Oxford, (1958).]]Google ScholarGoogle Scholar
  19. Albert Messiah, Quantum Mechanics, Dover Pubs., (2000), or any other, relatively modern book on quantum theory.]]Google ScholarGoogle Scholar
  20. G.J. Sussman, J. Wisdom, with M.E. Mayer, Structure and Interpretation of Classical Mechanics, M.I.T Press, (2002).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T.C. Ralph, W.J. Munro, G.J. Milburn Quantum Computation with Coherent States, Linear Interactions and Superposed Resources, Univ. of Queensland e-print arXiv:quant-ph/0110115, (2001).]]Google ScholarGoogle Scholar
  22. Daniel Kastler, Introduction à l'électrodynamique quantique, Dunod, Paris, (1960).]]Google ScholarGoogle Scholar
  23. Jerzy Karczmarczuk, Scientific Computation and Functional Programming, Computing in Science and Engineering, Vol. 1, (2001), pp. 64-72.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jerzy Karczmarczuk, Generating power of Lazy Semantics, Theor. Comp. Science 187, (1997), pp. 203--219.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Diederik Aerts, Ingrid Daubechies, Physical justification for using the tensor product to describe two quantum systems as one joint system, Helvetica Physica Acta, 51, (1978), pp. 661--675.]]Google ScholarGoogle Scholar
  26. John Baez, Web site math.ucr.edu/home/baez/photon/schmoton.htm.]]Google ScholarGoogle Scholar
  27. Mark P. Jones, Type Classes with Functional Dependencies, Proc. of the 9-th European Conf. on Programming, ESOP'2000, Springer LNCS 1782, Berlin, (2000).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. John S. Bell, Speakable and Unspeakable in Quanatum Mechanics, Cambridge Univ. Press, (1989).]]Google ScholarGoogle Scholar
  29. Tim Sheard, Simon Peyton Jones, Template meta-programming for Haskell, ACM, Haskell Workshop, Pittsburgh (2002), pp. 1--16.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Einstein, B. Podolski, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, (1935), p. 777.]]Google ScholarGoogle ScholarCross RefCross Ref
  31. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned, Nature 299, (1982), p. 802.]]Google ScholarGoogle ScholarCross RefCross Ref
  32. Jan Skibinski, Haskell Simulator of Quantum Computer, web.archive.org/web/ 20010630025035/ www.numeric-quest.com/ haskell/ QuantumComputer.html]]Google ScholarGoogle Scholar

Index Terms

  1. Structure and interpretation of quantum mechanics: a functional framework

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      Haskell '03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell
      August 2003
      114 pages
      ISBN:1581137583
      DOI:10.1145/871895

      Copyright © 2003 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 August 2003

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Haskell '03 Paper Acceptance Rate10of30submissions,33%Overall Acceptance Rate57of143submissions,40%

      Upcoming Conference

      ICFP '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader