skip to main content
research-article
Free Access
Just Accepted

Efficient Decoding of Affective States from Video-elicited EEG Signals: An Empirical Investigation

Online AM:03 May 2024Publication History
Skip Abstract Section

Abstract

Affect decoding through brain-computer interfacing (BCI) holds great potential to capture users’ feelings and emotional responses via non-invasive electroencephalogram (EEG) sensing. Yet, little research has been conducted to understand efficient decoding when users are exposed to dynamic audiovisual contents. In this regard, we study EEG-based affect decoding from videos in arousal and valence classification tasks, considering the impact of signal length, window size for feature extraction, and frequency bands. We train both classic Machine Learning models (SVMs and k-NNs) and modern Deep Learning models (FCNNs and GTNs). Our results show that: (1) affect can be effectively decoded using less than 1 minute of EEG signal; (2) temporal windows of 6 and 10 seconds provide the best classification performance for classic Machine Learning models but Deep Learning models benefit from much shorter windows of 2 seconds; and (3) any model trained on the Beta band alone achieves similar (sometimes better) performance than when trained on all frequency bands. Taken together, our results indicate that affect decoding can work in more realistic conditions than currently assumed, thus becoming a viable technology for creating better interfaces and user models.

References

  1. Abeer Al-Nafjan, Manar Hosny, Yousef Al-Ohali, and Areej Al-Wabil. 2017. Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review. Appl. Sci. 7, 12 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  2. Talha Burak Alakus, Murat Gonen, and Ibrahim Turkoglu. 2020. Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO. Biomed. Signal Process. Control 60 (2020).Google ScholarGoogle Scholar
  3. Soraia M Alarcao and Manuel J Fonseca. 2017. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 10, 3 (2017).Google ScholarGoogle Scholar
  4. Aurélien Appriou, Andrzej Cichocki, and Fabien Lotte. 2020. Modern machine-learning algorithms: for classifying cognitive and affective states from electroencephalography signals. IIEEE Trans. Syst. Man Cybern. Syst. 6, 3 (2020).Google ScholarGoogle Scholar
  5. Renan Vinicius Aranha, Cléber Gimenez Corrêa, and Fátima LS Nunes. 2019. Adapting software with affective computing: a systematic review. IEEE Trans. Affect. Comput. 12, 4 (2019).Google ScholarGoogle Scholar
  6. John Atkinson and Daniel Campos. 2016. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47(2016).Google ScholarGoogle Scholar
  7. Sara Bagherzadeh, Keivan Maghooli, Ahmad Shalbaf, and Arash Maghsoudi. 2022. Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals. Cogn. Neurodynamics 16, 5 (2022).Google ScholarGoogle Scholar
  8. Ludi Bai, Junqi Guo, Tianyou Xu, and Minghui Yang. 2020. Emotional Monitoring of Learners Based on EEG Signal Recognition. Procedia Comput. Sci. 174 (2020).Google ScholarGoogle Scholar
  9. Olivier Bertrand, Fabien Perrin, and Jacques Pernier. 1985. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr. Clin. Neurophysiol. 62, 6 (1985).Google ScholarGoogle Scholar
  10. Patricia E. G. Bestelmeyer, Sonja A. Kotz, and Pascal Belin. 2017. Effects of emotional valence and arousal on the voice perception network. Soc. Cogn. Affect. Neurosci. 12, 8 (2017).Google ScholarGoogle Scholar
  11. Adnan Mehmood Bhatti, Muhammad Majid, Syed Muhammad Anwar, and Bilal Khan. 2016. Human emotion recognition and analysis in response to audio music using brain signals. Comput. Hum. Behav. 65(2016).Google ScholarGoogle Scholar
  12. D. Blanco-Mora., A. Aldridge., C. Jorge., A. Vourvopoulos., P. Figueiredo., and S. Bermúdez i Badia. 2021. Finding the Optimal Time Window for Increased Classification Accuracy during Motor Imagery. In Proc. BIODEVICES.Google ScholarGoogle Scholar
  13. Scott Brave and Cliff Nass. 2007. Emotion in human-computer interaction. In The human-computer interaction handbook.Google ScholarGoogle Scholar
  14. Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599(2010).Google ScholarGoogle Scholar
  15. Emily A. Butler. 2017. Emotions are temporal interpersonal systems. Curr. Opin. Psychol. 17(2017).Google ScholarGoogle Scholar
  16. Sunwoo Chang and Hanjong Jun. 2019. Hybrid deep-learning model to recognise emotional responses of users towards architectural design alternatives. J. Asian Archit. Build. Eng. 18, 5 (2019).Google ScholarGoogle ScholarCross RefCross Ref
  17. JX Chen, PW Zhang, ZJ Mao, YF Huang, DM Jiang, and YN Zhang. 2019. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7(2019).Google ScholarGoogle ScholarCross RefCross Ref
  18. Lawrence S Chen and Thomas S Huang. 2000. Emotional expressions in audiovisual human computer interaction. In Proc. ICME.Google ScholarGoogle ScholarCross RefCross Ref
  19. Yucel Cimtay and Erhan Ekmekcioglu. 2020. Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors 20, 7 (2020).Google ScholarGoogle Scholar
  20. Keith M. Davis, Lauri Kangassalo, Michiel M. A. Spapé, and Tuukka Ruotsalo. 2020. Brainsourcing: Crowdsourcing Recognition Tasks via Collaborative Brain-Computer Interfacing. In Proc. CHI, Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.).Google ScholarGoogle Scholar
  21. D. Devi, S. Sophia, and S.R. Boselin Prabhu. 2021. Chapter 4 - Deep learning-based cognitive state prediction analysis using brain wave signal. In Cognitive Computing for Human-Robot Interaction, Mamta Mittal, Rajiv Ratn Shah, and Sudipta Roy (Eds.).Google ScholarGoogle Scholar
  22. Guanglong Du, Wenpei Zhou, Chunquan Li, Di Li, and Peter Xiaoping Liu. 2020. An Emotion Recognition Method for Game Evaluation Based on Electroencephalogram. IEEE Trans. Affect. Comput.(2020).Google ScholarGoogle Scholar
  23. Ruo-Nan Duan, Jia-Yi Zhu, and Bao-Liang Lu. 2013. Differential entropy feature for EEG-based emotion classification. In Proc. NER.Google ScholarGoogle ScholarCross RefCross Ref
  24. Richard O. Duda, Peter E. Hart, and David G. Stork. 2001. Pattern Classification(second ed. ed.). John Wiley & Sons.Google ScholarGoogle Scholar
  25. Elizabeth Duffy. 1934. Emotion: an example of the need for reorientation in psychology.Psychol. Rev. 41, 2 (1934).Google ScholarGoogle ScholarCross RefCross Ref
  26. Maria Egger, Matthias Ley, and Sten Hanke. 2019. Emotion recognition from physiological signal analysis: A review. Electron. Notes Theor. Comput. 343 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Phoebe C Ellsworth and Klaus R Scherer. 2003. Appraisal processes in emotion.Oxford University Press.Google ScholarGoogle Scholar
  28. OK Fasil and R Rajesh. 2019. Time-domain exponential energy for epileptic EEG signal classification. Neurosci. Lett. 694(2019).Google ScholarGoogle Scholar
  29. Firgan Feradov, Iosif Mporas, and Todor Ganchev. 2020. Evaluation of features in detection of dislike responses to audio–visual stimuli from EEG signals. Computers 9, 2 (2020).Google ScholarGoogle Scholar
  30. Filipe Galvão, Soraia M Alarcão, and Manuel J Fonseca. 2021. Predicting exact valence and arousal values from EEG. Sensors 21, 10 (2021).Google ScholarGoogle Scholar
  31. Sareh Soleimani Gilakjani and Hussein Al Osman. 2023. A Graph Neural Network for EEG-Based Emotion Recognition with Contrastive Learning and Generative Adversarial Neural Network Data Augmentation. IEEE Access (2023).Google ScholarGoogle Scholar
  32. Wiem Mimoun Ben Henia and Zied Lachiri. 2017. Emotion classification in arousal-valence dimension using discrete affective keywords tagging. In Proc. ICEMIS.Google ScholarGoogle Scholar
  33. Richard NA Henson. 2003. Neuroimaging studies of priming. Prog. Neurobiol. 70, 1 (2003).Google ScholarGoogle Scholar
  34. Bo Hjorth. 1970. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29, 3 (1970).Google ScholarGoogle Scholar
  35. Graham E Holder, Gastone G Celesia, Yozo Miyake, Shozo Tobimatsu, Richard G Weleber, et al. 2010. International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin. Neurophysiol. 121, 9 (2010).Google ScholarGoogle Scholar
  36. Wanrou Hu, Gan Huang, Linling Li, Li Zhang, Zhiguo Zhang, and Zhen Liang. 2020. Video-triggered EEG-emotion public databases and current methods: a survey. Brain Sci. Adv. 6, 3 (2020).Google ScholarGoogle ScholarCross RefCross Ref
  37. Maryam Imani and Gholam Ali Montazer. 2019. A survey of emotion recognition methods with emphasis on E-Learning environments. J. Netw. Comput. Appl. 147 (2019).Google ScholarGoogle Scholar
  38. Mahsa Pourhosein Kalashami, Mir Mohsen Pedram, and Hossein Sadr. 2022. EEG Feature Extraction and Data Augmentation in Emotion Recognition. Comput. Intell. Neurosci. 2022 (2022).Google ScholarGoogle Scholar
  39. Nidal Kamel and Aamir Saeed Malik. 2015. EEG/ERP Analysis: Methods and Applications. CRC Press, Taylor & Francis.Google ScholarGoogle Scholar
  40. Stamos Katsigiannis and Naeem Ramzan. 2017. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22, 1 (2017).Google ScholarGoogle Scholar
  41. Aleksandra Kawala-Sterniuk, Natalia Browarska, Amir Al-Bakri, Mariusz Pelc, Jaroslaw Zygarlicki, Michaela Sidikova, Radek Martinek, and Edward Jacek Gorzelanczyk. 2021. Summary of over fifty years with brain-computer interfaces—a review. Brain Sci. 11, 1 (2021).Google ScholarGoogle Scholar
  42. Sun-Hee Kim, Hyung-Jeong Yang, Ngoc Anh Thi Nguyen, Sunil Kumar Prabhakar, and Seong-Whan Lee. 2021. WeDea: A new EEG-based framework for emotion recognition. IEEE J. Biomed. Health Inform. 26, 1 (2021).Google ScholarGoogle Scholar
  43. Dong-Hee Ko, Dong-Hee Shin, and Tae-Eui Kam. 2021. Attention-based spatio-temporal-spectral feature learning for subject-specific EEG classification. In Proc. BCI.Google ScholarGoogle ScholarCross RefCross Ref
  44. Sander Koelstra, Christian Muhl, Mohammad Soleymani, Jong-Seok Lee, Ashkan Yazdani, Touradj Ebrahimi, Thierry Pun, Anton Nijholt, and Ioannis Patras. 2011. DEAP: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 1 (2011).Google ScholarGoogle Scholar
  45. Jerzy Kosiński, Krzysztof Szklanny, Alicja Wieczorkowska, and Marcin Wichrowski. 2018. An Analysis of Game-Related Emotions Using EMOTIV EPOC. In Proc. FedCSIS.Google ScholarGoogle Scholar
  46. Nataliya Kos’myna and Franck Tarpin-Bernard. 2013. Evaluation and Comparison of a Multimodal Combination of BCI Paradigms and Eye Tracking With Affordable Consumer-Grade Hardware in a Gaming Context. IEEE Trans. Comput. Intell. AI Games 5, 2 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  47. MB Kostyunina and MA Kulikov. 1996. Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 26, 4 (1996).Google ScholarGoogle Scholar
  48. Akhilesh Kumar and Awadhesh Kumar. 2021. DEEPHER: Human Emotion Recognition Using an EEG-Based DEEP Learning Network Model. Eng. Proc. 10, 1 (2021).Google ScholarGoogle ScholarCross RefCross Ref
  49. Nitin Kumar, Kaushikee Khaund, and Shyamanta M Hazarika. 2016. Bispectral analysis of EEG for emotion recognition. Procedia Comput. Sci. 84(2016).Google ScholarGoogle Scholar
  50. P. J. Lang. 1995. The emotion probe. Studies of motivation and attention. Am. Psychol. 50(1995).Google ScholarGoogle Scholar
  51. R. J. Larsen and E. Diener. 1992. Promises and problems with the circumplex model of emotion. In Review of personality and social psychology, M. Clark (Ed.). Vol.  13.Google ScholarGoogle Scholar
  52. Elnaz Lashgari, Dehua Liang, and Uri Maoz. 2020. Data augmentation for deep-learning-based electroencephalography. J. Neurosci. Methods 346(2020).Google ScholarGoogle Scholar
  53. Kayhan Latifzadeh and Luis A. Leiva. 2022. Gustav: Cross-device Cross-computer Synchronization of Sensory Signals. In Adj. Proc. UIST.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Robert W Levenson. 2003. Blood, sweat, and fears: The autonomic architecture of emotion. Ann. N. Y. Acad. Sci. 1000, 1 (2003).Google ScholarGoogle Scholar
  55. Chang Li, Zhongzhen Zhang, Rencheng Song, Juan Cheng, Yu Liu, and Xun Chen. 2021. EEG-based emotion recognition via neural architecture search. IEEE Trans. Affect. Comput. 14, 2 (2021).Google ScholarGoogle Scholar
  56. Mi Li, Hongpei Xu, Xingwang Liu, and Shengfu Lu. 2018. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technol. Health Care 26, S1 (2018).Google ScholarGoogle Scholar
  57. Xiang Li, Dawei Song, Peng Zhang, Yazhou Zhang, Yuexian Hou, and Bin Hu. 2018. Exploring EEG features in cross-subject emotion recognition. Front. Neurosci. 12(2018).Google ScholarGoogle Scholar
  58. Xiang Li, Yazhou Zhang, Prayag Tiwari, Dawei Song, Bin Hu, Meihong Yang, Zhigang Zhao, Neeraj Kumar, and Pekka Marttinen. 2022. EEG based Emotion Recognition: A Tutorial and Review. ACM Comput. Surv. (2022).Google ScholarGoogle Scholar
  59. Yang Li, Ji Chen, Fu Li, Boxun Fu, Hao Wu, Youshuo Ji, Yijin Zhou, Yi Niu, Guangming Shi, and Wenming Zheng. 2022. GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition. IEEE Trans. Affect. Comput.(2022).Google ScholarGoogle Scholar
  60. Christine L Lisetti and Fatma Nasoz. 2002. MAUI: a multimodal affective user interface. In Proc. ACM MM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao, Yizhou Chen, Zhiguang Wang, and Wei Song. 2021. Gated transformer networks for multivariate time series classification. arXiv preprint arXiv:2103.14438(2021).Google ScholarGoogle Scholar
  62. Yisi Liu and Olga Sourina. 2014. EEG-based subject-dependent emotion recognition algorithm using fractal dimension. In Proc. SMC.Google ScholarGoogle ScholarCross RefCross Ref
  63. Irene Lopatovska and Ioannis Arapakis. 2011. Theories, methods and current research on emotions in library and information science, information retrieval and human–computer interaction. Inf. Process. Manag. 47, 4 (2011).Google ScholarGoogle Scholar
  64. Juan-Miguel López-Gil, Jordi Virgili-Gomá, Rosa Gil, Teresa Guilera, Iolanda Batalla, Jorge Soler-González, and Roberto García. 2016. Method for improving EEG based emotion recognition by combining it with synchronized biometric and eye tracking technologies in a non-invasive and low cost way. Front. Comput. Neurosci. 10 (2016).Google ScholarGoogle ScholarCross RefCross Ref
  65. Yun Luo and Bao-Liang Lu. 2018. EEG data augmentation for emotion recognition using a conditional Wasserstein GAN. In Proc. EMBC.Google ScholarGoogle ScholarCross RefCross Ref
  66. Yun Luo, Li-Zhen Zhu, and Bao-Liang Lu. 2019. A GAN-based data augmentation method for multimodal emotion recognition. In Proc. ISNN.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Reza Mahini, Yansong Li, Weiyan Ding, Rao Fu, Tapani Ristaniemi, Asoke K. Nandi, Guoliang Chen, and Fengyu Cong. 2020. Determination of the time window of event-related potential using multiple-set consensus clustering. Front. Neurosci. 14(2020).Google ScholarGoogle Scholar
  68. Indronil Mazumder. 2019. An analytical approach of EEG analysis for emotion recognition. In Proc. DevIC.Google ScholarGoogle ScholarCross RefCross Ref
  69. Raja Majid Mehmood, Muhammad Bilal, S Vimal, and Seong-Whan Lee. 2022. EEG-based affective state recognition from human brain signals by using Hjorth-activity. Measurement 202(2022).Google ScholarGoogle Scholar
  70. Maria Luiza Recena Menezes, Anas Samara, Leo Galway, Anita Sant’Anna, Antanas Verikas, Fernando Alonso-Fernandez, Hui Wang, and Raymond Bond. 2017. Towards emotion recognition for virtual environments: an evaluation of EEG features on benchmark dataset. Pers. Ubiquit. Comput. 21 (2017).Google ScholarGoogle Scholar
  71. Zeynab Mohammadi, Javad Frounchi, and Mahmood Amiri. 2017. Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 28, 8 (2017).Google ScholarGoogle Scholar
  72. Yoelvis Moreno-Alcayde, V. Javier Traver, and Luis Leiva. 2023. Sneaky Emotions: Impact of Data Partitions in Affective Computing Experiments with Brain-Computer Interfacing. Biomed. Eng. Lett. (2023).Google ScholarGoogle Scholar
  73. Tim Mullen, Christian Kothe, Yu-Mei Chi, Alejandro Ojeda, Thomas Kerth, Scott Makeig, Gert Cauwenberghs, and Tzyy-Ping Jung. 2013. Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. In Proc. EMBC.Google ScholarGoogle ScholarCross RefCross Ref
  74. Donald A Norman. 2004. Emotional design: Why we love (or hate) everyday things. Civitas Books.Google ScholarGoogle Scholar
  75. Delin Ouyang, Yufei Yuan, Guofa Li, and Zizheng Guo. 2022. The Effect of Time Window Length on EEG-Based Emotion Recognition. Sensors 22, 13 (2022).Google ScholarGoogle Scholar
  76. Mehmet Siraç Özerdem and Hasan Polat. 2017. Emotion recognition based on EEG features in movie clips with channel selection. Brain Inform. 4, 4 (2017).Google ScholarGoogle Scholar
  77. Evi Septiana Pane, Adhi Dharma Wibawa, and Mauridhi Hery Pumomo. 2018. Channel selection of EEG emotion recognition using stepwise discriminant analysis. In Proc. CENIM.Google ScholarGoogle ScholarCross RefCross Ref
  78. Victoria Peterson, Catalina Galván, Hugo Hernández, and Ruben Spies. 2020. A feasibility study of a complete low-cost consumer-grade brain-computer interface system. Heliyon 6, 3 (2020).Google ScholarGoogle Scholar
  79. Rosalind W Picard. 2000. Affective computing. MIT press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Rosalind W Picard and Jonathan Klein. 2002. Computers that recognise and respond to user emotion: theoretical and practical implications. Interact. Comput. 14, 2 (2002).Google ScholarGoogle Scholar
  81. Rosalind W. Picard, Elias Vyzas, and Jennifer Healey. 2001. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23, 10 (2001).Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Md Asadur Rahman, Md Foisal Hossain, Mazhar Hossain, and Rasel Ahmmed. 2020. Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egypt. Inform. J. 21, 1 (2020), 23–35.Google ScholarGoogle ScholarCross RefCross Ref
  83. Soheil Rayatdoost, David Rudrauf, and Mohammad Soleymani. 2020. Expression-guided EEG representation learning for emotion recognition. In Proc. ICASSP.Google ScholarGoogle ScholarCross RefCross Ref
  84. James A Russell. 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 6 (1980).Google ScholarGoogle ScholarCross RefCross Ref
  85. Simanto Saha and Mathias Baumert. 2019. Intra- and Inter-subject Variability in EEG-based Sensorimotor Brain Computer Interface: A Review. Frontiers Comput. Neurosci. 13 (2019).Google ScholarGoogle Scholar
  86. S. Saha, K. A. Mamun, K. Ahmed, R. Mostafa, G. R. Naik, S. Darvishi, A. H. Khandoker, and M. Baumert. 2021. Progress in brain computer interface: challenges and opportunities. Front. Syst. Neurosci. 15, 578875 (2021).Google ScholarGoogle Scholar
  87. Elham S Salama, Reda A El-Khoribi, Mahmoud E Shoman, and Mohamed A Wahby Shalaby. 2018. EEG-based emotion recognition using 3D convolutional neural networks. Int. J. Adv. Comput. Sci. Appl. 9, 8 (2018).Google ScholarGoogle Scholar
  88. Laxmi Shaw and Aurobinda Routray. 2016. Statistical features extraction for multivariate pattern analysis in meditation EEG using PCA. In Proc. ISC.Google ScholarGoogle ScholarCross RefCross Ref
  89. Xinke Shen, Xianggen Liu, Xin Hu, Dan Zhang, and Sen Song. [n.d.]. Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition. IEEE Trans. Affect. Comput.([n. d.]).Google ScholarGoogle Scholar
  90. Lin Shu, Jinyan Xie, Mingyue Yang, Ziyi Li, Zhenqi Li, Dan Liao, Xiangmin Xu, and Xinyi Yang. 2018. A review of emotion recognition using physiological signals. Sensors 18, 7 (2018).Google ScholarGoogle Scholar
  91. Nitesh Singh Malan and Shiru Sharma. 2021. Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification. Biomed. Signal Process. Control 67 (2021).Google ScholarGoogle Scholar
  92. Mohammad Soleymani, Jeroen Lichtenauer, Thierry Pun, and Maja Pantic. 2011. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3, 1 (2011).Google ScholarGoogle Scholar
  93. Tengfei Song, Wenming Zheng, Peng Song, and Zhen Cui. 2020. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE Trans. Affect. Comput. 11, 3 (2020).Google ScholarGoogle ScholarCross RefCross Ref
  94. Hanne AA Spelt, Joyce HDM Westerink, Lily Frank, Jaap Ham, and Wijnand A IJsselsteijn. 2022. Physiology-based personalization of persuasive technology: a user modeling perspective. User Model. User-Adapt. Interact. 32, 1 (2022).Google ScholarGoogle Scholar
  95. Nattapong Thammasan, Ken-ichi Fukui, and Masayuki Numao. 2016. Application of deep belief networks in EEG-based dynamic music-emotion recognition. In Proc. IJCNN.Google ScholarGoogle ScholarCross RefCross Ref
  96. S. Thejaswini, K. M. Ravi Kumar, and A. N. Jhenkar L. 2019. Analysis of EEG based emotion detection of DEAP and SEED-IV databases using SVM. In Proc. ICETSE.Google ScholarGoogle Scholar
  97. Edgar P. Torres, Edgar A. Torres, Myriam Hernández-Álvarez, and Sang Guun Yoo. 2021. Real-Time Emotion Recognition for EEG Signals Recollected from Online Poker Game Participants. In Proc. Advances in Artificial Intelligence, Software and Systems Engineering, Tareq Z. Ahram, Waldemar Karwowski, and Jay Kalra (Eds.).Google ScholarGoogle ScholarCross RefCross Ref
  98. Edgar P. Torres, Edgar A. Torres, Myriam Hernández-Álvarez, and Sang Guun Yoo. 2020. EEG-based BCI Emotion Recognition: A Survey. Sensors 20(2020).Google ScholarGoogle Scholar
  99. V. Javier Traver, Judith Zorío, and Luis A. Leiva. 2021. Glimpse: A Gaze-Based Measure of Temporal Salience. Sensors 21, 9 (2021).Google ScholarGoogle Scholar
  100. K. D. Tzimourta, N. Giannakeas, A. T. Tzallas, L. G. Astrakas, T. Afrantou, P. Ioannidis, N. Grigoriadis, P. Angelidis, D. G. Tsalikakis, and M. G. Tsipouras. 2019. EEG Window Length Evaluation for the Detection of Alzheimer’s Disease over Different Brain Regions. Brain Sci. 9, 4 (2019).Google ScholarGoogle Scholar
  101. Kalyani P Wagh and K Vasanth. 2019. Electroencephalograph (EEG) based emotion recognition system: A review. Innov. Electron. Commun. Eng.(2019).Google ScholarGoogle Scholar
  102. Kalyani P Wagh and K Vasanth. 2022. Performance evaluation of multi-channel electroencephalogram signal (EEG) based time frequency analysis for human emotion recognition. Biomed. Signal Process. Control 78 (2022).Google ScholarGoogle Scholar
  103. Johannes Wagner, Jonghwa Kim, and Elisabeth André. 2005. From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In Proc. ICME.Google ScholarGoogle ScholarCross RefCross Ref
  104. Fang Wang, Sheng-hua Zhong, Jianfeng Peng, Jianmin Jiang, and Yan Liu. 2018. Data augmentation for EEG-based emotion recognition with deep convolutional neural networks. In Proc. MMM.Google ScholarGoogle ScholarCross RefCross Ref
  105. Pengchao Wang, Zuoting Song, Hao Chen, Tao Fang, Yuan Zhang, Xueze Zhang, Shouyan Wang, Hui Li, Yifang Lin, Jie Jia, Lihua Zhang, and Xiaoyang Kang. 2021. Application of Combined Brain Computer Interface and Eye Tracking. In Proc. BCI.Google ScholarGoogle ScholarCross RefCross Ref
  106. Zhong-Min Wang, Shu-Yuan Hu, and Hui Song. 2019. Channel selection method for EEG emotion recognition using normalized mutual information. IEEE Access 7(2019).Google ScholarGoogle ScholarCross RefCross Ref
  107. Mimoun Ben Henia Wiem and Zied Lachiri. 2017. Emotion classification in arousal valence model using MAHNOB-HCI database. Int. J. Adv. Comput. Sci. Appl. 8, 3 (2017).Google ScholarGoogle Scholar
  108. Tao Xu, Yun Zhou, Zi Wang, and Yixin Peng. 2018. Learning Emotions EEG-based Recognition and Brain Activity: A Survey Study on BCI for Intelligent Tutoring System. Procedia Comput. Sci. 130 (2018).Google ScholarGoogle Scholar
  109. Xueyuan Xu, Fulin Wei, Zhiyuan Zhu, Jianhong Liu, and Xia Wu. 2020. EEG feature selection using orthogonal regression: Application to emotion recognition. In Proc. ICASSP.Google ScholarGoogle ScholarCross RefCross Ref
  110. Jianzhuo Yan, Shangbin Chen, and Sinuo Deng. 2019. A EEG-based emotion recognition model with rhythm and time characteristics. Brain Inform. 6, 1 (2019).Google ScholarGoogle Scholar
  111. Zhihong Zeng, Maja Pantic, Glenn I Roisman, and Thomas S Huang. 2007. A survey of affect recognition methods: audio, visual and spontaneous expressions. In Proc. ICMI.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Jianhai Zhang, Ming Chen, Shaokai Zhao, Sanqing Hu, Zhiguo Shi, and Yu Cao. 2016. ReliefF-based EEG sensor selection methods for emotion recognition. Sensors 16, 10 (2016).Google ScholarGoogle Scholar
  113. Yaqing Zhang, Jinling Chen, Jen Hong Tan, Yuxuan Chen, Yunyi Chen, Dihan Li, Lei Yang, Jian Su, Xin Huang, and Wenliang Che. 2020. An investigation of deep learning models for EEG-based emotion recognition. Front. Neurosci. 14(2020).Google ScholarGoogle Scholar
  114. Yuchan Zhang, Guanghui Yan, Wenwen Chang, Wenqie Huang, and Yueting Yuan. 2023. EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition. Biomed. Signal Process. Control 79 (2023).Google ScholarGoogle Scholar
  115. Zhi Zhang, Sheng-hua Zhong, and Yan Liu. 2022. GANSER: A Self-supervised Data Augmentation Framework for EEG-based Emotion Recognition. IEEE Trans. Affect. Comput.(2022).Google ScholarGoogle Scholar
  116. Wei-Long Zheng, Bo-Nan Dong, and Bao-Liang Lu. 2014. Multimodal emotion recognition using EEG and eye tracking data. In Proc. EMBC.Google ScholarGoogle Scholar
  117. Wei-Long Zheng and Bao-Liang Lu. 2015. Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 7, 3 (2015).Google ScholarGoogle Scholar
  118. Wei-Long Zheng, Jia-Yi Zhu, and Bao-Liang Lu. 2019. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 10, 3 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Peixiang Zhong, Di Wang, and Chunyan Miao. 2022. EEG-based Emotion Recognition Using Regularized Graph Neural Networks. IEEE Trans. Affect. Comput. 13, 3 (2022).Google ScholarGoogle ScholarCross RefCross Ref
  120. Yun Zhou, Tao Xu, Shaoqi Li, and Ruifeng Shi. 2019. Beyond Engagement: An EEG-Based Methodology for Assessing User’s Confusion in an Educational Game. Univers. Access Inf. Soc. 18, 3 (2019).Google ScholarGoogle Scholar

Index Terms

  1. Efficient Decoding of Affective States from Video-elicited EEG Signals: An Empirical Investigation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Multimedia Computing, Communications, and Applications
          ACM Transactions on Multimedia Computing, Communications, and Applications Just Accepted
          ISSN:1551-6857
          EISSN:1551-6865
          Table of Contents

          Copyright © 2024 Copyright held by the owner/author(s).

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Online AM: 3 May 2024
          • Accepted: 26 April 2024
          • Revised: 20 March 2024
          • Received: 29 October 2023
          Published in tomm Just Accepted

          Check for updates

          Qualifiers

          • research-article
        • Article Metrics

          • Downloads (Last 12 months)72
          • Downloads (Last 6 weeks)72

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader