skip to main content
research-article
Free Access
Just Accepted

Mobility Data Science: Perspectives and Challenges

Authors Info & Claims
Online AM:07 May 2024Publication History
Skip Abstract Section

Abstract

Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art, and describe open challenges for the research community in the coming years.

References

  1. ACM SIGSPATIAL CUP 2017 [n. d.]. ACM SIGSPATIAL CUP 2017. http://sigspatial2017.sigspatial.org/giscup2017/download.Google ScholarGoogle Scholar
  2. Gergely Acs and Claude Castelluccia. 2014. A case study: Privacy preserving release of spatio-temporal density in paris. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 1679–1688.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, Carola Wenk, Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. 2015. Map construction algorithms. Springer.Google ScholarGoogle Scholar
  4. Tanvir Ahmed, Torben Bach Pedersen, and Hua Lu. 2014. Finding dense locations in indoor tracking data. In 2014 IEEE 15th International Conference on Mobile Data Management, Vol.  1. IEEE, 189–194.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ritesh Ahuja, Gabriel Ghinita, and Cyrus Shahabi. 2020. Differentially-Private Next-Location Prediction with Neural Networks. In Proceedings of the 23rd International Conference on Extending Database Technology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, Angela Bonifati, Yongluan Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan Olteanu, George H. L. Fletcher, Arijit Khan, and Bin Yang (Eds.). OpenProceedings.org, 121–132. https://doi.org/10.5441/002/edbt.2020.12Google ScholarGoogle ScholarCross RefCross Ref
  6. Wesam Al Amiri, Mohamed Baza, Karim Banawan, Mohamed Mahmoud, Waleed Alasmary, and Kemal Akkaya. 2019. Privacy-preserving smart parking system using blockchain and private information retrieval. In 2019 international conference on smart applications, communications and networking (SmartNets). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  7. Louai Alarabi and Mohamed F. Mokbel. 2020. A Demonstration of Summit: a Scalable Data Management Framework for Massive Trajectory. In IEEE International Conference on Mobile Data Management, MDM (Versailles, France). 226–227.Google ScholarGoogle ScholarCross RefCross Ref
  8. Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. 2018. ST-Hadoop: a MapReduce Framework for Spatio-temporal Data. GeoInformatica 22, 4 (2018), 785–813.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Alnafessah, Suheer Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa. 2016. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 16, 5 (2016), 707.Google ScholarGoogle ScholarCross RefCross Ref
  10. Antonio MR Almeida, Jose LA Leite, Jose AF Macedo, and Javam C Machado. 2017. Gps2gr: Optimized urban green routes based on GPS trajectories. In Proceedings of the 8th ACM SIGSPATIAL Workshop on GeoStreaming. 39–48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ahmed M. Aly, Walid G. Aref, and Mourad Ouzzani. 2012. Spatial Queries with Two kNN Predicates. Proc. VLDB Endow. 5, 11 (2012), 1100–1111. https://doi.org/10.14778/2350229.2350231Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ahmed M. Aly, Walid G. Aref, and Mourad Ouzzani. 2015. Cost Estimation of Spatial k-Nearest-Neighbor Operators. In Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015. OpenProceedings.org, 457–468. https://doi.org/10.5441/002/EDBT.2015.40Google ScholarGoogle ScholarCross RefCross Ref
  13. Ahmed M. Aly, Walid G. Aref, and Mourad Ouzzani. 2015. Spatial queries with k-nearest-neighbor and relational predicates. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, WA, USA, November 3-6, 2015. ACM, 28:1–28:10. https://doi.org/10.1145/2820783.2820815Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. 2013. Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. 901–914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gennady Andrienko, Natalia Andrienko, Peter Bak, Daniel Keim, and Stefan Wrobel. 2013. Visual Analytics of Movement. Springer. https://doi.org/10.1007/978-3-642-37583-5Google ScholarGoogle ScholarCross RefCross Ref
  16. Walid G. Aref, Yeasir Rayhan, Libin Zhou, and Anas Daghistani. 2022. ILX: Intelligent ”Location+X” Data Systems (Vision Paper). CoRR abs/2206.09520(2022). https://doi.org/10.48550/ARXIV.2206.09520 arXiv:2206.09520Google ScholarGoogle ScholarCross RefCross Ref
  17. Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. 2013. A general framework for geo-social query processing. Proc. of the VLDB Endowment 6, 10 (2013), 913–924.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Alexander Artikis and Dimitris Zissis. 2021. Guide to Maritime Informatics. Springer.Google ScholarGoogle Scholar
  19. Mohammad Asghari, Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, and Yaguang Li. 2016. Price-aware real-time ride-sharing at scale: an auction-based approach. In Proceedings of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems. 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. 2018. Spatio-Temporal Data Mining: A Survey of Problems and Methods. ACM Comput. Surv. 51, 4 (aug 2018). https://doi.org/10.1145/3161602Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. 2019. Differential privacy has disparate impact on model accuracy. Advances in neural information processing systems 32 (2019).Google ScholarGoogle Scholar
  22. Mohamed Bakli, Mahmoud Sakr, and Taysir Hassan A. Soliman. 2019. HadoopTrajectory: a Hadoop spatiotemporal data processing extension. Journal of Geographical Systems(2019), 1–25.Google ScholarGoogle Scholar
  23. Mohamed Bakli, Mahmoud Sakr, and Esteban Zimányi. 2020. Distributed spatiotemporal trajectory query processing in SQL. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems. 87–98.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Satchit Balsari, Caroline Buckee, Jennifer Chan, and Andrew Schroeder. 2022. The user of human mobility data in public health emergencies. In CrisisReady. https://www.crisisready.io/wp-content/uploads/2022/06/The-Use-of-Human-Mobility-Data-in-Public-Health-Emergencies.pdfGoogle ScholarGoogle Scholar
  25. Jie Bao, Ruiyuan Li, Xiuwen Yi, and Yu Zheng. 2016. Managing Massive Trajectories on the Cloud. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPACIAL ’16). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2996913.2996916Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jie Bao, Yu Zheng, David Wilkie, and Mohamed Mokbel. 2015. Recommendations in location-based social networks: a survey. GeoInformatica 19, 3 (2015), 525–565.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R. James, Maxime Lenormand, Thomas Louail, Ronaldo Menezes, José J. Ramasco, Filippo Simini, and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics Reports 734(2018), 1–74. https://doi.org/10.1016/j.physrep.2018.01.001 Human mobility: Models and applications.Google ScholarGoogle ScholarCross RefCross Ref
  28. Emmanouil Barmpounakis and Nikolas Geroliminis. 2020. On the New Era of Urban Traffic Monitoring with Massive Drone Data: The pNEUMA Large-scale Field Experiment. Transportation Research Part C: Emerging Technologies 111 (2020), 50–71.Google ScholarGoogle ScholarCross RefCross Ref
  29. Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay Chawla, Sam Madden, and David J. DeWitt. 2018. RoadTracer: Automatic Extraction of Road Networks From Aerial Images. In CVPR. Salt Lake City, UT, USA, 4720–4728.Google ScholarGoogle Scholar
  30. Zeynep Batmaz, Ali Yürekli, Alper Bilge, and Cihan Kaleli. 2019. A review on deep learning for recommender systems: challenges and remedies. Artif. Intell. Rev. 52, 1 (2019), 1–37. https://doi.org/10.1007/s10462-018-9654-yGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  31. Luca Bedogni, Federico Montori, and Flora Salim. 2022. Location Contact Tracing: Penetration, Privacy, Position, and Performance. Digital Government: Research and Practice 3, 3 (2022), 1–13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Luca Bedogni, Shakila Khan Rumi, and Flora D Salim. 2021. Modelling memory for individual re-identification in decentralised mobile contact tracing applications. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 1 (2021), 1–21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Thomas Behr, Victor Teixeira de Almeida, and Ralf Hartmut Güting. 2006. Representation of Periodic Moving Objects in Databases. In Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems(Arlington, Virginia, USA) (GIS ’06). Association for Computing Machinery, New York, NY, USA, 43–50. https://doi.org/10.1145/1183471.1183480Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. 2011. SUMO – Simulation of Urban MObility: An Overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation.Google ScholarGoogle Scholar
  35. Rimantas Benetis, Christian S Jensen, Gytis Karĉiauskas, and Simonas Ŝaltenis. 2006. Nearest and reverse nearest neighbor queries for moving objects. The VLDB Journal 15(2006), 229–249.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Christos Berberidis, Ioannis P. Vlahavas, Walid G. Aref, Mikhail J. Atallah, and Ahmed K. Elmagarmid. 2002. On the Discovery of Weak Periodicities in Large Time Series. In Principles of Data Mining and Knowledge Discovery, 6th European Conference, PKDD 2002, Helsinki, Finland, August 19-23, 2002, Proceedings(Lecture Notes in Computer Science, Vol.  2431). Springer, 51–61. https://doi.org/10.1007/3-540-45681-3_5Google ScholarGoogle ScholarCross RefCross Ref
  37. James Biagioni and Jakob Eriksson. 2012. Inferring Road Maps from Global Positioning System Traces: Survey and Comparative Evaluation. Transportation Research Record: Journal of the Transportation Research Board 2291, 1 (2012), 61–71.Google ScholarGoogle ScholarCross RefCross Ref
  38. Bike Share Metro Data [n. d.]. Bike Share Metro Data. https://bikeshare.metro.net/about/data/.Google ScholarGoogle Scholar
  39. Bike Town System Data [n. d.]. Bike Town System Data. https://www.biketownpdx.com/system-data.Google ScholarGoogle Scholar
  40. Filip Biljecki, Hugo Ledoux, and Peter Van Oosterom. 2013. Transportation mode-based segmentation and classification of movement trajectories. International Journal of Geographical Information Science 27, 2(2013), 385–407.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici, and Antonello Rabuffi. 2014. CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded from https://crawdad.org/roma/taxi/20140717.Google ScholarGoogle Scholar
  42. Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. 2005. On Map-Matching Vehicle Tracking Data. In VLDB. Trondheim, Norway, 853–864.Google ScholarGoogle Scholar
  43. Yang Cao, Yonghui Xiao, Li Xiong, Liquan Bai, and Masatoshi Yoshikawa. 2019. Protecting spatiotemporal event privacy in continuous location-based services. IEEE Transactions on Knowledge and Data Engineering 33, 8(2019), 3141–3154.Google ScholarGoogle ScholarCross RefCross Ref
  44. Capital Bike Share System Data [n. d.]. Capital Bike Share System Data. https://www.capitalbikeshare.com/system-data.Google ScholarGoogle Scholar
  45. Salvatore Carlucci, Marilena De Simone, Steven K Firth, Mikkel B Kjærgaard, Romana Markovic, Mohammad Saiedur Rahaman, Masab Khalid Annaqeeb, Silvia Biandrate, Anooshmita Das, Jakub Wladyslaw Dziedzic, et al. 2020. Modeling occupant behavior in buildings. Building and Environment 174 (2020), 106768.Google ScholarGoogle ScholarCross RefCross Ref
  46. Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. 2020. A Survey on Map-Matching Algorithms. In Australasian Database Conference, ADC. Melbourne, Australia, 121–133.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Kostantinos Chatzikokolakis, Ehab ElSalamouny, Catuscia Palamidessi, Pazii Anna, et al. 2017. Methods for location privacy: A comparative overview. Foundations and Trends® in Privacy and Security 1, 4(2017), 199–257.Google ScholarGoogle Scholar
  48. Chen Chen, Cewu Lu, Qixing Huang, Qiang Yang, Dimitrios Gunopulos, and Leonidas J. Guibas. 2016. City-Scale Map Creation and Updating using GPS Collections. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM, 1465–1474. https://doi.org/10.1145/2939672.2939833Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jinchuan Chen and Reynold Cheng. 2006. Efficient evaluation of imprecise location-dependent queries. In 2007 IEEE 23rd International Conference on Data Engineering. IEEE, 586–595.Google ScholarGoogle Scholar
  50. Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. 2021. Deep Learning for Sensor-Based Human Activity Recognition: Overview, Challenges, and Opportunities. ACM Comput. Surv. 54, 4, Article 77 (may 2021), 40 pages. https://doi.org/10.1145/3447744Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Lisi Chen, Shuo Shang, Christian S Jensen, Bin Yao, Zhiwei Zhang, and Ling Shao. 2019. Effective and efficient reuse of past travel behavior for route recommendation. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 488–498.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Rui Chen, Haoran Li, A Kai Qin, Shiva Prasad Kasiviswanathan, and Hongxia Jin. 2016. Private spatial data aggregation in the local setting. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 289–300.Google ScholarGoogle ScholarCross RefCross Ref
  53. Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. 2013. Where You Like to Go Next: Successive Point-of-Interest Recommendation.. In IJCAI, Vol.  13. 2605–2611.Google ScholarGoogle Scholar
  54. Zhiyuan Cheng, James Caverlee, Kyumin Lee, and Daniel Z Sui. 2011. Exploring millions of footprints in location sharing services.ICWSM 2011(2011), 81–88.Google ScholarGoogle Scholar
  55. Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. 1082–1090.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Hyunghoon Cho, Daphne Ippolito, and Yun William Yu. 2020. Contact tracing mobile apps for COVID-19: Privacy considerations and related trade-offs. arXiv preprint arXiv:2003.11511(2020).Google ScholarGoogle Scholar
  57. Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data cleaning: Overview and emerging challenges. In Proceedings of the 2016 international conference on management of data. 2201–2206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Buncha Chuaysi and Supaporn Kiattisin. 2020. Fishing vessels behavior identification for combating IUU fishing: Enable traceability at sea. Wireless Personal Communications 115 (2020), 2971–2993.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Sai-Ho Chung, Hoi-Lam Ma, Mark Hansen, and Tsan-Ming Choi. 2020. Data science and analytics in aviation., 101837 pages.Google ScholarGoogle Scholar
  60. CitiBike System Data [n. d.]. CitiBike System Data. https://ride.citibikenyc.com/system-data.Google ScholarGoogle Scholar
  61. Christophe Claramunt, Cyril Ray, L Salmon, E Camossi, Melita Hadzagic, AL Jousselme, G Andrienko, N Andrienko, Y Theodoridis, and G Vouros. 2017. Maritime data integration and analysis: recent progress and research challenges. Advances in Database Technology-EDBT 2017 (2017), 192–197.Google ScholarGoogle Scholar
  62. CoGo Bike Share System Data [n. d.]. CoGo Bike Share System Data. https://www.cogobikeshare.com/system-data.Google ScholarGoogle Scholar
  63. Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang. 2018. Privacy at scale: Local differential privacy in practice. In Proceedings of the 2018 International Conference on Management of Data. 1655–1658.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yanan Da, Ritesh Ahuja, Li Xiong, and Cyrus Shahabi. 2021. React: real-time contact tracing and risk monitoring via privacy-enhanced mobile tracking. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2729–2732.Google ScholarGoogle ScholarCross RefCross Ref
  65. Yanan Da, Ritesh Ahuja, Li Xiong, and Cyrus Shahabi. 2021. REACT: Real-Time Contact Tracing and Risk Monitoring via Privacy-Enhanced Mobile Tracking. In 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 2729–2732. https://doi.org/10.1109/ICDE51399.2021.00315Google ScholarGoogle ScholarCross RefCross Ref
  66. Anas Daghistani, Walid G. Aref, Arif Ghafoor, and Ahmed R. Mahmood. 2021. SWARM: Adaptive Load Balancing in Distributed Streaming Systems for Big Spatial Data. ACM Trans. Spatial Algorithms Syst. 7, 3 (2021), 14:1–14:43. https://doi.org/10.1145/3460013Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. 2015. Personalized route recommendation using big trajectory data. In 2015 IEEE 31st International Conference on Data Engineering. 543–554. https://doi.org/10.1109/ICDE.2015.7113313Google ScholarGoogle ScholarCross RefCross Ref
  68. Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data cleaning system. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 541–552.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Allan M De Souza, Roberto S Yokoyama, Guilherme Maia, Antonio Loureiro, and Leandro Villas. 2016. Real-time path planning to prevent traffic jam through an intelligent transportation system. In 2016 IEEE symposium on computers and communication (ISCC). IEEE, 726–731.Google ScholarGoogle ScholarCross RefCross Ref
  70. Daniel Dias and Luis Henrique Maciel Kosmalski Costa. 2018. CRAWDAD dataset coppe-ufrj/RioBuses (v. 2018-03-19). Downloaded from https://crawdad.org/coppe-ufrj/RioBuses/20180319.Google ScholarGoogle Scholar
  71. Divvy Bikes System Data [n. d.]. Divvy Bikes System Data. https://www.divvybikes.com/system-data.Google ScholarGoogle Scholar
  72. Bing Dong, Yapan Liu, Hannah Fontenot, Mohamed Ouf, Mohamed Osman, Adrian Chong, Shuxu Qin, Flora Salim, Hao Xue, Da Yan, et al. 2021. Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review. Applied Energy 293(2021), 116856.Google ScholarGoogle ScholarCross RefCross Ref
  73. Bing Dong, Yapan Liu, Wei Mu, Zixin Jiang, Pratik Pandey, Tianzhen Hong, Bjarne Olesen, Thomas Lawrence, Zheng O’Neil, et al. 2022. A global building occupant behavior database. Scientific data 9, 1 (2022), 369.Google ScholarGoogle Scholar
  74. Enrica d’Afflisio, Paolo Braca, and Peter Willett. 2021. Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection. IEEE Trans. Aerospace Electron. Systems 57, 4 (2021), 2093–2108. https://doi.org/10.1109/TAES.2021.3083466Google ScholarGoogle ScholarCross RefCross Ref
  75. Justin Elarde, Joon-Seok Kim, Hamdi Kavak, Andreas Züfle, and Taylor Anderson. 2021. Change of human mobility during COVID-19: A United States case study. PloS one 16, 11 (2021), e0259031.Google ScholarGoogle ScholarCross RefCross Ref
  76. Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. 2004. Using Convolution to Mine Obscure Periodic Patterns in One Pass. In Advances in Database Technology - EDBT 2004, 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings(Lecture Notes in Computer Science, Vol.  2992). Springer, 605–620. https://doi.org/10.1007/978-3-540-24741-8_35Google ScholarGoogle ScholarCross RefCross Ref
  77. Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel. 2022. Network-less trajectory imputation. In SIGSPATIAL. 8:1–8:10.Google ScholarGoogle Scholar
  78. Ming-Chung Fang and Yu-Hsien Lin. 2015. The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements (II): Optimized routings. Applied Ocean Research 50 (2015), 130–140.Google ScholarGoogle ScholarCross RefCross Ref
  79. Federal Geographic Data Committee. [n. d.]. Geospatial Metadata Standards and Guidelines. https://www.fgdc.gov/metadata/geospatial-metadata-standard.Google ScholarGoogle Scholar
  80. Robin G Fegeas, Janette L Cascio, and Robert A Lazar. 1992. An Overview of FIPS 173, The Spatial Data Transfer Standard. Cartography and Geographic Information Systems 19, 5 (1992), 278–293.Google ScholarGoogle ScholarCross RefCross Ref
  81. Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent Networks. In WWW. 1459–1468.Google ScholarGoogle Scholar
  82. Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 1322–1333.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Kaiqun Fu, Zhiqian Chen, and Chang-Tien Lu. 2018. Streetnet: preference learning with convolutional neural network on urban crime perception. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 269–278.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Nan Gao, Max Marschall, Jane Burry, Simon Watkins, and Flora D Salim. 2022. Understanding occupants’ behaviour, engagement, emotion, and comfort indoors with heterogeneous sensors and wearables. Scientific Data 9, 1 (2022), 261.Google ScholarGoogle ScholarCross RefCross Ref
  85. Nan Gao, Hao Xue, Wei Shao, Sichen Zhao, Kyle Kai Qin, Arian Prabowo, Mohammad Saiedur Rahaman, and Flora D Salim. 2022. Generative adversarial networks for spatio-temporal data: A survey. ACM Transactions on Intelligent Systems and Technology (TIST) 13, 2(2022), 1–25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli Zhang. 2017. Identifying Human Mobility via Trajectory Embeddings.. In IJCAI, Vol.  17. 1689–1695.Google ScholarGoogle Scholar
  87. Qiang Gao, Fan Zhou, Ting Zhong, Goce Trajcevski, Xin Yang, and Tianrui Li. 2022. Contextual spatio-temporal graph representation learning for reinforced human mobility mining. Inf. Sci. 606(2022), 230–249. https://doi.org/10.1016/j.ins.2022.05.049Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and Kian-Lee Tan. 2008. Private queries in location based services: anonymizers are not necessary. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data. 121–132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Michael F. Goodchild. 2010. Twenty years of progress: GIScience in 2010. Journal of Spatial Information Science 1 (2010), 3–20. https://doi.org/10.5311/JOSIS.2010.1.2Google ScholarGoogle ScholarCross RefCross Ref
  90. Michael F Goodchild. 1998. Uncertainty: The Achilles Heel of GIS. Geo Info Systems 8, 11 (1998), 50–52.Google ScholarGoogle Scholar
  91. Matthew Graham, Mark Kutzbach, and Brian McKenzie. 2014. Design Comparison of LODES and ACS Commuting Data Products. Technical Report. US Census Bureau, Center for Economic Studies.Google ScholarGoogle Scholar
  92. A. Graser. 2021. An exploratory data analysis protocol for identifying problems in continuous movement data. Journal of Location Based Services 15, 2 (2021), 89–117. https://doi.org/10.1080/17489725.2021.1900612Google ScholarGoogle ScholarCross RefCross Ref
  93. Anita Graser. 2023. The State of Trajectory Visualization in Notebook Environments. GI_Forum 1(2023), 73–91. https://doi.org/10.1553/giscience2022_02_s73Google ScholarGoogle ScholarCross RefCross Ref
  94. Stéphane Grumbach, Philippe Rigaux, and Luc Segoufin. 1998. The DEDALE System for Complex Spatial Queries. SIGMOD Rec. 27, 2 (jun 1998), 213–224. https://doi.org/10.1145/276305.276324Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Xiaolan Gu, Ming Li, Li Xiong, and Yang Cao. 2020. Providing input-discriminative protection for local differential privacy. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 505–516.Google ScholarGoogle ScholarCross RefCross Ref
  96. Mark F Guagliardo. 2004. Spatial accessibility of primary care: concepts, methods and challenges. International journal of health geographics 3, 1 (2004), 1–13.Google ScholarGoogle Scholar
  97. Chenjuan Guo, Bin Yang, Ove Andersen, Christian S Jensen, and Kristian Torp. 2015. Ecomark 2.0: empowering eco-routing with vehicular environmental models and actual vehicle fuel consumption data. GeoInformatica 19(2015), 567–599.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Ralf Hartmut Güting, Thomas Behr, and Christian Düntgen. 2010. SECONDO: A Platform for Moving Objects Database Research and for Publishing and Integrating Research Implementations. IEEE Data Eng. Bull. 33(2010), 56–63.Google ScholarGoogle Scholar
  99. Ralf Hartmut Güting, Victor Teixeira De Almeida, and Zhiming Ding. 2006. Modeling and querying moving objects in networks. The VLDB Journal 15(2006), 165–190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Ralf Hartmut Güting and Markus Schneider. 2005. Moving objects databases. Elsevier.Google ScholarGoogle Scholar
  101. Ralf Güting, Michael Böhlen, Martin Erwig, Christian Jensen, Nikos Lorentzos, Markus Schneider, and Michalis Vazirgiannis. 2000. A Foundation for Representing and Querying Moving Objects. ACM Transactions on Database Systems (TODS) 25 (03 2000), 1–42. https://doi.org/10.1145/352958.352963Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Xiaolin Han, Reynold Cheng, Chenhao Ma, and Tobias Grubenmann. 2022. DeepTEA: effective and efficient online time-dependent trajectory outlier detection. Proceedings of the VLDB Endowment 15, 7 (2022), 1493–1505.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Robert Harle. 2013. A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials 15, 3 (2013), 1281–1293.Google ScholarGoogle ScholarCross RefCross Ref
  104. Xi He, Graham Cormode, Ashwin Machanavajjhala, Cecilia Procopiuc, and Divesh Srivastava. 2015. DPT: differentially private trajectory synthesis using hierarchical reference systems. Proceedings of the VLDB Endowment 8, 11 (2015), 1154–1165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Jörn Hinnenthal and Günther Clauss. 2010. Robust Pareto-optimum routing of ships utilising deterministic and ensemble weather forecasts. Ships and Offshore Structures 5, 2 (Aug. 2010), 105–114. https://doi.org/10.1080/17445300903210988Google ScholarGoogle ScholarCross RefCross Ref
  106. Boyeong Hong, Bartosz J Bonczak, Arpit Gupta, and Constantine E Kontokosta. 2021. Measuring inequality in community resilience to natural disasters using large-scale mobility data. Nature communications 12, 1 (2021), 1870.Google ScholarGoogle Scholar
  107. Xiao Hou, Song Gao, Qin Li, Yuhao Kang, Nan Chen, Kaiping Chen, Jinmeng Rao, Jordan S Ellenberg, and Jonathan A Patz. 2021. Intracounty modeling of COVID-19 infection with human mobility: Assessing spatial heterogeneity with business traffic, age, and race. Proceedings of the National Academy of Sciences 118, 24(2021), e2020524118.Google ScholarGoogle ScholarCross RefCross Ref
  108. Xiaocheng Huang, Yifang Yin, Simon Lim, Guanfeng Wang, Bo Hu, Jagannadan Varadarajan, Shaolin Zheng, Ajay Bulusu, and Roger Zimmermann. 2019. Grab-Posisi: An Extensive Real-Life GPS Trajectory Dataset in Southeast Asia. In Proceedings of the ACM SIGSPATIAL International Workshop on Prediction of Human Mobility, PredictGIS 2019. Chicago, IL, USA, 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung. 2006. Continuous Skyline Queries for Moving Objects. IEEE Transactions on Knowledge and Data Engineering 18, 12(2006), 1645–1658.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. IEA (2023) [n. d.]. IEA (2023), CO2 Emissions in 2022, IEA, Paris. https://www.iea.org/reports/co2-emissions-in-2022 (Accessed 05/08/2023), License: CC BY 4.0.Google ScholarGoogle Scholar
  111. Faheem Ijaz, Hee Kwon Yang, Arbab Waheed Ahmad, and Chankil Lee. 2013. Indoor positioning: A review of indoor ultrasonic positioning systems. In 2013 15th International Conference on Advanced Communications Technology (ICACT). IEEE, 1146–1150.Google ScholarGoogle Scholar
  112. Indego Trip Data [n. d.]. Indego Trip Data. https://www.rideindego.com/about/data/.Google ScholarGoogle Scholar
  113. INRIX. [n. d.]. 2022 Global Traffic Scorecard: https://inrix.com/scorecard/ (Accessed 01/11/2023).Google ScholarGoogle Scholar
  114. Christian S. Jensen, Hua Lu, and Bin Yang. 2009. Graph Model Based Indoor Tracking. In 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware. 122–131. https://doi.org/10.1109/MDM.2009.23Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Christian S Jensen, Hua Lu, and Bin Yang. 2010. Indoor-A New Data Management Frontier.IEEE Data Eng. Bull. 33, 2 (2010), 12–17.Google ScholarGoogle Scholar
  116. Fengmei Jin, Wen Hua, Jiajie Xu, and Xiaofang Zhou. 2019. Moving object linking based on historical trace. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1058–1069.Google ScholarGoogle ScholarCross RefCross Ref
  117. Tanvi Jindal, Prasanna Giridhar, Lu-An Tang, Jun Li, and Jiawei Han. 2013. Spatiotemporal periodical pattern mining in traffic data. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, UrbComp@KDD 2013, Chicago, Illinois, USA, August 11, 2013. ACM, 11:1–11:8. https://doi.org/10.1145/2505821.2505837Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Rocío Joo, Matthew E. Boone, Thomas A. Clay, Samantha C. Patrick, Susana Clusella‐Trullas, and Mathieu Basille. 2020. Navigating through the R packages for movement. Journal of Animal Ecology 89, 1 (Jan. 2020), 248–267. https://doi.org/10.1111/1365-2656.13116Google ScholarGoogle ScholarCross RefCross Ref
  119. Gregor Jossé, Klaus Arthur Schmid, Andreas Züfle, Georgios Skoumas, Matthias Schubert, and Dieter Pfoser. 2015. Tourismo: A user-preference tourist trip search engine. In Advances in Spatial and Temporal Databases: 14th International Symposium, SSTD 2015, Hong Kong, China, August 26-28, 2015. Proceedings 14. Springer, 514–519.Google ScholarGoogle ScholarCross RefCross Ref
  120. Jong Wook Kim and Beakcheol Jang. 2019. Workload-aware indoor positioning data collection via local differential privacy. IEEE communications letters 23, 8 (2019), 1352–1356.Google ScholarGoogle ScholarCross RefCross Ref
  121. Mohammad R. Kolahdouzan and Cyrus Shahabi. 2004. Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases. In (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004, Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer (Eds.). Morgan Kaufmann, 840–851. https://doi.org/10.1016/B978-012088469-8.50074-7Google ScholarGoogle ScholarCross RefCross Ref
  122. John Krumm. 2022. Maximum entropy bridgelets for trajectory completion. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems. 1–8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Pedro Lara-Benítez, Manuel Carranza-García, and José C. Riquelme. 2021. An Experimental Review on Deep Learning Architectures for Time Series Forecasting. Int. J. Neural Syst. 31, 3 (2021), 2130001:1–2130001:28. https://doi.org/10.1142/S0129065721300011Google ScholarGoogle ScholarCross RefCross Ref
  124. Chunggi Lee, Yeonjun Kim, Seungmin Jin, Dongmin Kim, Ross Maciejewski, David Ebert, and Sungahn Ko. 2020. A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion. IEEE Transactions on Visualization and Computer Graphics 26, 11(2020), 3133–3146. https://doi.org/10.1109/TVCG.2019.2922597Google ScholarGoogle ScholarCross RefCross Ref
  125. Bozhao Li, Zhongliang Cai, Mengjun Kang, Shiliang Su, Shanshan Zhang, Lili Jiang, and Yong Ge. 2021. A Trajectory Restoration Algorithm for Low-sampling-rate Floating Car Data and Complex Urban Road Networks. International Journal of GIS 35, 4 (2021), 717–740.Google ScholarGoogle Scholar
  126. Huan Li, Hua Lu, Christian S. Jensen, Bo Tang, and Muhammad Aamir Cheema. 2023. Spatial Data Quality in the Internet of Things: Management, Exploitation, and Prospects. Comput. Surveys 55, 3 (2023), 57:1–57:41.Google ScholarGoogle Scholar
  127. Ming Li, Rene Westerholt, Hongchao Fan, and Alexander Zipf. 2016. Assessing spatiotemporal predictability of LBSN: a case study of three Foursquare datasets. GeoInformatica (2016), 1–21.Google ScholarGoogle Scholar
  128. Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Yuan Sui, Jie Bao, and Yu Zheng. 2020. Trajmesa: A distributed nosql storage engine for big trajectory data. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2002–2005.Google ScholarGoogle ScholarCross RefCross Ref
  129. Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez. 2007. Traffic density-based discovery of hot routes in road networks. In Advances in Spatial and Temporal Databases: 10th International Symposium, SSTD 2007, Boston, MA, USA, July 16-18, 2007. Proceedings 10. Springer, 441–459.Google ScholarGoogle ScholarCross RefCross Ref
  130. Yang Li, Dimitrios Gunopulos, Cewu Lu, and Leonidas J. Guibas. 2019. Personalized Travel Time Prediction Using a Small Number of Probe Vehicles. ACM Trans. Spatial Algorithms Syst. 5, 1 (2019), 4:1–4:27. https://doi.org/10.1145/3317663Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Yang Li, Yangyan Li, Dimitrios Gunopulos, and Leonidas J. Guibas. 2016. Knowledge-based Trajectory Completion from Sparse GPS Samples. In SIGSPATIAL. 33:1–33:10.Google ScholarGoogle Scholar
  132. Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=SJiHXGWAZGoogle ScholarGoogle Scholar
  133. Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. 2015. Traffic prediction in a bike-sharing system. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems. 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Canhong Lin, King Lun Choy, George TS Ho, Sai Ho Chung, and HY Lam. 2014. Survey of green vehicle routing problem: past and future trends. Expert systems with applications 41, 4 (2014), 1118–1138.Google ScholarGoogle Scholar
  135. Zongyu Lin, Shiqing Lyu, Hancheng Cao, Fengli Xu, Yuqiong Wei, Hanan Samet, and Yong Li. 2020. HealthWalks: Sensing fine-grained individual health condition via mobility data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 4 (2020), 1–26.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. London Cycling Data [n. d.]. London Cycling Data. https://cycling.data.tfl.gov.uk/.Google ScholarGoogle Scholar
  137. Jed A. Long. 2016. Kinematic Interpolation of Movement Data. International Journal of Geographical Information Science 30, 5(2016), 854–868.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. 2023. A Survey on Deep Learning for Human Mobility. ACM Comput. Surv. 55, 2 (2023), 7:1–7:44. https://doi.org/10.1145/3485125Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. )]BostonBikes Lyft Bikes Bay Wheels Trip Data [n. d.]. BlueBikes System Data. https://www.bluebikes.com/system-data.Google ScholarGoogle Scholar
  140. )]BayAreaBikes Lyft Bikes Bay Wheels Trip Data [n. d.]. Lyft Bikes Bay Wheels Trip Data. https://www.lyft.com/bikes/bay-wheels/system-data.Google ScholarGoogle Scholar
  141. Jane Macfarlane and Matei Stroila. 2016. Addressing the uncertainties in autonomous driving. SIGSPATIAL Special 8, 2 (2016), 35–40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Madrid Open Data [n. d.]. Madrid Open Data. https://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1).Google ScholarGoogle Scholar
  143. Hiroya Maeda, Yoshihide Sekimoto, and Toshikazu Seto. 2016. Lightweight road manager: smartphone-based automatic determination of road damage status by deep neural network. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems. 37–45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Ahmed R. Mahmood, Ahmed M. Aly, Tatiana Kuznetsova, Saleh M. Basalamah, and Walid G. Aref. 2018. Disk-Based Indexing of Recent Trajectories. ACM Trans. Spatial Algorithms Syst. 4, 3 (2018), 7:1–7:27. https://doi.org/10.1145/3234941Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Ahmed R. Mahmood, Ahmed M. Aly, Thamir Qadah, El Kindi Rezig, Anas Daghistani, Amgad Madkour, Ahmed S. Abdelhamid, Mohamed S. Hassan, Walid G. Aref, and Saleh M. Basalamah. 2015. Tornado: A Distributed Spatio-Textual Stream Processing System. Proc. VLDB Endow. 8, 12 (2015), 2020–2023. https://doi.org/10.14778/2824032.2824126Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Ahmed R. Mahmood, Anas Daghistani, Ahmed M. Aly, MingJie Tang, Saleh M. Basalamah, Sunil Prabhakar, and Walid G. Aref. 2018. Adaptive processing of spatial-keyword data over a distributed streaming cluster. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2018, Seattle, WA, USA, November 06-09, 2018. ACM, 219–228. https://doi.org/10.1145/3274895.3274932Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Ahmed R. Mahmood, Sri Punni, and Walid G. Aref. 2019. Spatio-temporal Access Methods: A Survey (2010 - 2017). GeoInformatica 23, 1 (2019), 1–36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Fabio Mazzarella, Michele Vespe, Alfredo Alessandrini, Dario Tarchi, Giuseppe Aulicino, and Antonio Vollero. 2017. A novel anomaly detection approach to identify intentional AIS on-off switching. Expert Systems with Applications 78 (2017), 110–123. https://doi.org/10.1016/j.eswa.2017.02.011Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. MicrosoftMissingRoads [n. d.]. Discover New Roads with Bing Maps. https://blogs.bing.com/maps/2022-12/Bing-Maps-is-bringing-new-roads/.Google ScholarGoogle Scholar
  150. Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. 2018. A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture. IEEE Access 6(2018), 39501–39514. https://doi.org/10.1109/ACCESS.2018.2855437Google ScholarGoogle ScholarCross RefCross Ref
  151. Darakhshan J Mir, Sibren Isaacman, Ramón Cáceres, Margaret Martonosi, and Rebecca N Wright. 2013. Dp-where: Differentially private modeling of human mobility. In 2013 IEEE international conference on big data. IEEE, 580–588.Google ScholarGoogle ScholarCross RefCross Ref
  152. Mohamed Mokbel, Sofiane Abbar, and Rade Stanojevic. 2020. Contact tracing: Beyond the apps. SIGSPATIAL Special 12, 2 (2020), 15–24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, et al. 2022. Mobility data science (Dagstuhl seminar 22021). In Dagstuhl reports, Vol.  12. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.Google ScholarGoogle Scholar
  154. Mohamed F Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mohamed Sarwat, Ethan Waytas, and Steven Yackel. 2013. MNTG: An extensible web-based traffic generator. In Advances in Spatial and Temporal Databases: 13th International Symposium, SSTD 2013, Munich, Germany, August 21-23, 2013. Proceedings 13. Springer, 38–55.Google ScholarGoogle ScholarCross RefCross Ref
  155. Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. 2003. Spatio-Temporal Access Methods. IEEE Data Eng. Bull. 26, 2 (2003), 40–49. http://sites.computer.org/debull/A03june/arefF.psGoogle ScholarGoogle Scholar
  156. Mohamed F Mokbel, Li Xiong, and Demetrios Zeinalipour-Yazti. 2022. Introduction to the special issue on contact tracing., 2 pages.Google ScholarGoogle Scholar
  157. Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. 2004. SINA: Scalable Incremental Processing of Continuous Queries in Spatio-temporal Databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data (Paris, France). 623–634.Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Peter Mooney, Marco Minghini, et al. 2017. A review of OpenStreetMap data. Mapping and the citizen sensor(2017), 37–59.Google ScholarGoogle Scholar
  159. Sobhan Moosavi, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, Radu Teodorescu, and Rajiv Ramnath. 2019. Accident risk prediction based on heterogeneous sparse data: New dataset and insights. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 33–42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Mashaal Musleh, Sofiane Abbar, Rade Stanojevic, and Mohamed Mokbel. 2021. QARTA: an ML-based system for accurate map services. Proceedings of the VLDB Endowment 14, 11 (2021), 2273–2282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Mashaal Musleh and Mohamed F. Mokbel. 2022. RASED: A Scalable Dashboard for Monitoring Road Network Updates in OSM. In MDM. 214–221.Google ScholarGoogle Scholar
  162. Attila M. Nagy and Vilmos Simon. 2018. Survey on traffic prediction in smart cities. Pervasive and Mobile Computing 50 (2018), 148–163. https://doi.org/10.1016/j.pmcj.2018.07.004Google ScholarGoogle ScholarCross RefCross Ref
  163. New York Times. [n. d.]. For Big-Data Scientists, ’Janitor Work’ Is Key Hurdle to Insights https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html(Accessed 05/05/2023).Google ScholarGoogle Scholar
  164. Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel. 2010. Spatio-Temporal Access Methods: Part 2 (2003 - 2010). IEEE Data Eng. Bull. 33, 2 (2010), 46–55. http://sites.computer.org/debull/A10june/Aref.pdfGoogle ScholarGoogle Scholar
  165. NiceRide System Data [n. d.]. NiceRide System Data. https://www.niceridemn.com/system-data.Google ScholarGoogle Scholar
  166. Jan Nijman and Yehua Dennis Wei. 2020. Urban inequalities in the 21st century economy. Applied geography 117(2020), 102188.Google ScholarGoogle Scholar
  167. Panagiotis Nikitopoulos, Aris-Iakovos Paraskevopoulos, Christos Doulkeridis, Nikos Pelekis, and Yannis Theodoridis. 2018. Hot Spot Analysis over Big Trajectory Data. In 2018 IEEE International Conference on Big Data (Big Data). 761–770. https://doi.org/10.1109/BigData.2018.8622376Google ScholarGoogle ScholarCross RefCross Ref
  168. Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, and Massimiliano Pontil. 2011. An empirical study of geographic user activity patterns in Foursquare.ICWSM 11(2011), 70–573.Google ScholarGoogle Scholar
  169. NYC [n. d.]. Kaggle. New York City Taxi Trip Duration. https://www.kaggle.com/c/nyc-taxi-trip-duration/data.Google ScholarGoogle Scholar
  170. Oracle and/or its affiliates. 2022. Stream IoT data to an autonomous database using serverless functions F35431-06. https://docs.oracle.com/en/solutions/iot-streaming-oci/index.html#GUID-FEE82830-EE69-42C8-8068-BF955DD4A025Google ScholarGoogle Scholar
  171. OSM [n. d.]. Open Street Map. http://www.openstreetmap.org.Google ScholarGoogle Scholar
  172. Federico Ossi, Fatima Hachem, Francesca Cagnacci, Urška Demšar, and Maria Luisa Damiani. 2022. HaniMob 2021 Workshop Report: The 1st ACM SIGSPATIAL Workshop on Animal Movement Ecology and Human Mobility. SIGSPATIAL Special 13, 1-3 (2022), 33–36.Google ScholarGoogle Scholar
  173. Scott E Page. 1999. Computational Models from A to Z. Complexity 5, 1 (1999), 35–41.Google ScholarGoogle ScholarCross RefCross Ref
  174. Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. 2013. Crowd sensing of traffic anomalies based on human mobility and social media. In Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems. 344–353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele Massucco, Paolo Ferragina, Dino Pedreschi, and Fosca Giannotti. 2019. A public data set of spatio-temporal match events in soccer competitions. Nature Scientific data 6, 1 (2019), 236.Google ScholarGoogle Scholar
  176. Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Natalia Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis, Jose Macedo, Nikos Pelekis, et al. 2013. Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR) 45, 4 (2013), 1–32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. Kostas Patroumpas, Elias Alevizos, Alexander Artikis, Marios Vodas, Nikos Pelekis, and Yannis Theodoridis. 2017. Online event recognition from moving vessel trajectories. GeoInformatica 21(2017), 389–427.Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Nikos Pelekis, Chiara Renso, Yannis Theodoridis, and Karine Zeitouni. 2022. Editor’s note. GeoInformatica 26, 3 (2022), 449. https://doi.org/10.1007/s10707-022-00468-zGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  179. Dieter Pfoser. 2016. Crowdsourcing Geographic Information Systems. Springer New York, New York, NY, 1–8. https://doi.org/10.1007/978-1-4899-7993-3_80607-1Google ScholarGoogle ScholarCross RefCross Ref
  180. Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2009. CRAWDAD dataset epfl/mobility (v. 2009-02-24). Downloaded from https://crawdad.org/epfl/mobility/20090224.Google ScholarGoogle Scholar
  181. Porto [n. d.]. Taxi Service Trajectory. Prediction Challenge. ECML PKDD 2015. http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.Google ScholarGoogle Scholar
  182. PostGIS Project Steering Committee and others (https://postgis.net). 2023. PostGIS, spatial and geographic objects for postgreSQL.Google ScholarGoogle Scholar
  183. Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. 2018. Knock Knock, Who’s There? Membership Inference on Aggregate Location Data.Google ScholarGoogle Scholar
  184. Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. 2017. Knock knock, who’s there? Membership inference on aggregate location data. arXiv preprint arXiv:1708.06145(2017).Google ScholarGoogle Scholar
  185. Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. 2017. What does the crowd say about you? evaluating aggregation-based location privacy. Proceedings on privacy enhancing technologies 2017, 4(2017), 156–176.Google ScholarGoogle ScholarCross RefCross Ref
  186. Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Differentially private grids for geospatial data. In 2013 IEEE 29th international conference on data engineering (ICDE). IEEE, 757–768.Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. Sirisha Rambhatla, Sepanta Zeighami, Kameron Shahabi, Cyrus Shahabi, and Yan Liu. 2022. Toward Accurate Spatiotemporal COVID-19 Risk Scores Using High-Resolution Real-World Mobility Data. ACM Trans. Spatial Algorithms Syst. 8, 2 (2022), 1–30. https://doi.org/10.1145/3481044Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. Leonie Reichert, Samuel Brack, and Björn Scheuermann. 2020. Privacy-preserving contact tracing of COVID-19 patients. Cryptology ePrint Archive(2020).Google ScholarGoogle Scholar
  189. Leonie Reichert, Samuel Brack, and Björn Scheuermann. 2021. A survey of automatic contact tracing approaches using Bluetooth Low Energy. ACM Transactions on Computing for Healthcare 2, 2 (2021), 1–33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. Yongli Ren, Martin Tomko, Flora D Salim, Jeffrey Chan, and Mark Sanderson. 2018. Understanding the predictability of user demographics from cyber-physical-social behaviours in indoor retail spaces. EPJ Data Science 7, 1 (2018), 1–21.Google ScholarGoogle ScholarCross RefCross Ref
  191. Yongli Ren, Martin Tomko, Flora Dilys Salim, Kevin Ong, and Mark Sanderson. 2017. Analyzing Web behavior in indoor retail spaces. Journal of the Association for Information Science and Technology 68, 1(2017), 62–76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  192. El Kindi Rezig, Lei Cao, Michael Stonebraker, Giovanni Simonini, Wenbo Tao, Samuel Madden, Mourad Ouzzani, Nan Tang, and Ahmed K. Elmagarmid. 2019. Data Civilizer 2.0: A Holistic Framework for Data Preparation and Analytics. Proc. VLDB Endow. 12, 12 (aug 2019), 1954–1957. https://doi.org/10.14778/3352063.3352108Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. Keven Richly, Ralf Teusner, Alexander Immer, Fabian Windheuser, and Lennard Wolf. 2015. Optimizing routes of public transportation systems by analyzing the data of taxi rides. In Proceedings of the 1st International ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. 70–76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Ride Austin Dataset [n. d.]. Ride Austin Dataset. https://data.world/ride-austin/ride-austin-june-6-april-13.Google ScholarGoogle Scholar
  195. Maria Riveiro, Giuliana Pallotta, and Michele Vespe. 2018. Maritime anomaly detection: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8, 5(2018), e1266.Google ScholarGoogle ScholarCross RefCross Ref
  196. Hamada Rizk, Marwan Torki, and Moustafa Youssef. 2018. CellinDeep: Robust and accurate cellular-based indoor localization via deep learning. IEEE Sensors Journal 19, 6 (2018), 2305–2312.Google ScholarGoogle ScholarCross RefCross Ref
  197. Alexander Rodríguez, Harshavardhan Kamarthi, Pulak Agarwal, Javen Ho, Mira Patel, Suchet Sapre, and B Aditya Prakash. 2022. Data-centric epidemic forecasting: A survey. arXiv preprint arXiv:2207.09370(2022).Google ScholarGoogle Scholar
  198. Safegraph. [n. d.]. Safegraph. Places Data Curated for Accurate Geospatial Analytics. https://www.safegraph.com/.Google ScholarGoogle Scholar
  199. SafeGraph Inc. [n. d.]. Weekly Patterns Dataset (https://docs.safegraph.com/docs/weekly-patterns).Google ScholarGoogle Scholar
  200. Mahmoud Sakr, Cyril Ray, and Chiara Renso. 2022. Big Mobility Data Analytics: Recent Advances and Open Problems. Geoinformatica 26, 4 (oct 2022), 541–549. https://doi.org/10.1007/s10707-022-00483-0Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. Mahmoud Attia Sakr and Ralf Hartmut Güting. 2014. Group spatiotemporal pattern queries. GeoInformatica 18(2014), 699–746.Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. Flora D. Salim, Bing Dong, Mohamed Ouf, Qi Wang, Ilaria Pigliautile, Xuyuan Kang, Tianzhen Hong, Wenbo Wu, Yapan Liu, Shakila Khan Rumi, Mohammad Saiedur Rahaman, Jingjing An, Hengfang Deng, Wei Shao, Jakub Dziedzic, Fisayo Caleb Sangogboye, Mikkel Baun Kjærgaard, Meng Kong, Claudia Fabiani, Anna Laura Pisello, and Da Yan. 2020. Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey. Building and Environment 183 (2020).Google ScholarGoogle ScholarCross RefCross Ref
  203. Salvatore Scellato, Anastasios Noulas, and Cecilia Mascolo. 2011. Exploiting place features in link prediction on location-based social networks. In ACM SIGKDD. 1046–1054.Google ScholarGoogle Scholar
  204. Erik Seglem, Andreas Züfle, Jan Stutzki, Felix Borutta, Evgheniy Faerman, and Matthias Schubert. 2017. On privacy in spatio-temporal data: User identification using microblog data. In Advances in Spatial and Temporal Databases: 15th International Symposium, SSTD 2017, Arlington, VA, USA, August 21–23, 2017, Proceedings 15. Springer, 43–61.Google ScholarGoogle ScholarCross RefCross Ref
  205. Sumit Shah, Fenye Bao, Chang-Tien Lu, and Ing-Ray Chen. 2011. Crowdsafe: crowd sourcing of crime incidents and safe routing on mobile devices. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 521–524.Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. Sina Shaham, Gabriel Ghinita, Ritesh Ahuja, John Krumm, and Cyrus Shahabi. 2022. HTF: Homogeneous Tree Framework for Differentially-Private Release of Large Geospatial Datasets with Self-Tuning Structure Height. ACM Transactions on Spatial Algorithms and Systems (2022).Google ScholarGoogle Scholar
  207. Sina Shaham, Gabriel Ghinita, and Cyrus Shahabi. 2022. Models and Mechanisms for Spatial Data Fairness. Proc. VLDB Endow. 16, 2 (2022), 167–179. https://www.vldb.org/pvldb/vol16/p167-ghinita.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  208. Shuo Shang, Bo Yuan, Ke Deng, Kexin Xie, and Xiaofang Zhou. 2011. Finding the most accessible locations: reverse path nearest neighbor query in road networks. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 181–190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: distributed in-memory trajectory analytics. In Proceedings of the 2018 International Conference on Management of Data. 725–740.Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. Wei Shao, Arian Prabowo, Sichen Zhao, Siyu Tan, Piotr Koniusz, Jeffrey Chan, Xinhong Hei, Bradley Feest, and Flora D Salim. 2019. Flight delay prediction using airport situational awareness map. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 432–435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. Ashwin Shashidharan, Varun Chandola, and Ranga Raju Vatsavai. 2021. The 9th ACM SIGSPATIAL International Workshop on Analytics for Big Spatial Data (BigSpatial 2020) November 3, 2020. SIGSPATIAL Special 12, 3 (2021), 15–16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. Shashi Shekhar, Zhe Jiang, Reem Y. Ali, Emre Eftelioglu, Xun Tang, Venkata M. V. Gunturi, and Xun Zhou. 2015. Spatiotemporal Data Mining: A Computational Perspective. ISPRS International Journal of Geo-Information 4, 4(2015), 2306–2338. https://doi.org/10.3390/ijgi4042306Google ScholarGoogle ScholarCross RefCross Ref
  213. Jaewoo Shin, Jianguo Wang, and Walid G. Aref. 2021. The LSM RUM-Tree: A Log Structured Merge R-Tree for Update-intensive Spatial Workloads. In 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 2285–2290. https://doi.org/10.1109/ICDE51399.2021.00238Google ScholarGoogle ScholarCross RefCross Ref
  214. Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP). IEEE, 3–18.Google ScholarGoogle ScholarCross RefCross Ref
  215. Yuanchao Shu, Cheng Bo, Guobin Shen, Chunshui Zhao, Liqun Li, and Feng Zhao. 2015. Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE Journal on Selected Areas in Communications 33, 7(2015), 1443–1457.Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. Yasin N. Silva, Walid G. Aref, Per-Åke Larson, Spencer Pearson, and Mohamed H. Ali. 2013. Similarity queries: their conceptual evaluation, transformations, and processing. VLDB J. 22, 3 (2013), 395–420. https://doi.org/10.1007/S00778-012-0296-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  217. Thanos G Stavropoulos, Asterios Papastergiou, Lampros Mpaltadoros, Spiros Nikolopoulos, and Ioannis Kompatsiaris. 2020. IoT wearable sensors and devices in elderly care: A literature review. Sensors 20, 10 (2020), 2826.Google ScholarGoogle ScholarCross RefCross Ref
  218. Daniel Sui, Sarah Elwood, and Michael Goodchild. 2012. Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice. Springer Science & Business Media.Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. Xu Teng, Goce Trajcevski, Joon-Seok Kim, and Andreas Züfle. 2020. Semantically diverse path search. In 2020 21st IEEE International Conference on Mobile Data Management (MDM). IEEE, 69–78.Google ScholarGoogle ScholarCross RefCross Ref
  220. Xu Teng, Goce Trajcevski, and Andreas Züfle. 2021. Semantically diverse paths with range and origin constraints. In Proceedings of the 29th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 375–378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  221. Hien To, Gabriel Ghinita, and Cyrus Shahabi. 2014. A framework for protecting worker location privacy in spatial crowdsourcing. Proceedings of the VLDB Endowment 7, 10 (2014), 919–930.Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. Hien To, Cyrus Shahabi, and Li Xiong. 2018. Privacy-preserving online task assignment in spatial crowdsourcing with untrusted server. In 2018 IEEE 34th international conference on data engineering (ICDE). IEEE, 833–844.Google ScholarGoogle ScholarCross RefCross Ref
  223. Waldo R Tobler. 1970. A computer movie simulating urban growth in the Detroit region. Economic geography 46, sup1 (1970), 234–240.Google ScholarGoogle Scholar
  224. Magdalena I Tolea, John C Morris, and James E Galvin. 2016. Trajectory of mobility decline by type of dementia. Alzheimer disease and associated disorders 30, 1 (2016), 60.Google ScholarGoogle Scholar
  225. Dimitrios Tomaras, Vana Kalogeraki, Thomas Liebig, and Dimitrios Gunopulos. 2018. Crowd-Based Ecofriendly Trip Planning. In 19th IEEE International Conference on Mobile Data Management, MDM 2018, Aalborg, Denmark, June 25-28, 2018. IEEE Computer Society, 24–33. https://doi.org/10.1109/MDM.2018.00018Google ScholarGoogle ScholarCross RefCross Ref
  226. Kevin Toohey and Matt Duckham. 2015. Trajectory similarity measures. Sigspatial Special 7, 1 (2015), 43–50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. Goce Trajcevski, Ouri Wolfson, Klaus Hinrichs, and Sam Chamberlain. 2004. Managing Uncertainty in Moving Objects Databases. ACM Trans. Database Syst. 29, 3 (sep 2004), 463–507. https://doi.org/10.1145/1016028.1016030Google ScholarGoogle ScholarDigital LibraryDigital Library
  228. Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé, James Larus, Edouard Bugnion, Wouter Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele Antonioli, et al. 2020. Decentralized privacy-preserving proximity tracing. arXiv preprint arXiv:2005.12273(2020).Google ScholarGoogle Scholar
  229. Robert Truong, Olga Gkountouna, Dieter Pfoser, and Andreas Züfle. 2018. Towards a better understanding of public transportation traffic: A case study of the Washington, DC metro. Urban Science 2, 3 (2018), 65.Google ScholarGoogle ScholarCross RefCross Ref
  230. ULB Data science lab. [n. d.]. MobilityDB, an open source geospatial trajectory data management and analysis platform (https://mobilitydb.com).Google ScholarGoogle Scholar
  231. United Nations Conference on Trade and Development. [n. d.]. Review of Maritime Transport 2022. https://unctad.org/rmt2022.Google ScholarGoogle Scholar
  232. United Nations Department of Economic and Social Affairs. 2018. Revision of world urbanization prospects. New York: United Nations Department of Economic and Social Affairs (2018).Google ScholarGoogle Scholar
  233. United States Geological Survey. [n. d.]. USGS Science Data Catalog. https://data.usgs.gov/datacatalog/.Google ScholarGoogle Scholar
  234. U.S. Department of Transportation. [n. d.]. Data Inventory. https://www.transportation.gov/data.Google ScholarGoogle Scholar
  235. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).Google ScholarGoogle Scholar
  236. Mohammad M Vazifeh, Hongmou Zhang, Paolo Santi, and Carlo Ratti. 2019. Optimizing the deployment of electric vehicle charging stations using pervasive mobility data. Transportation Research Part A: Policy and Practice 121 (2019), 75–91.Google ScholarGoogle ScholarCross RefCross Ref
  237. Ymir Vigfusson, Thorgeir A Karlsson, Derek Onken, Congzheng Song, Atli F Einarsson, Nishant Kishore, Rebecca M Mitchell, Ellen Brooks-Pollock, Gudrun Sigmundsdottir, and Leon Danon. 2021. Cell-phone traces reveal infection-associated behavioral change. Proceedings of the National Academy of Sciences 118, 6 (2021), e2005241118.Google ScholarGoogle ScholarCross RefCross Ref
  238. Renee E Walker, Christopher R Keane, and Jessica G Burke. 2010. Disparities and access to healthy food in the United States: A review of food deserts literature. Health & place 16, 5 (2010), 876–884.Google ScholarGoogle Scholar
  239. Fengjiao Wang, Guan Wang, and S Yu Philip. 2014. Why Checkins: Exploring User Motivation on Location Based Social Networks. In Data Mining Workshop (ICDMW). IEEE, 27–34.Google ScholarGoogle Scholar
  240. Guang Wang, Xiuyuan Chen, Fan Zhang, Yang Wang, and Desheng Zhang. 2019. Experience: Understanding Long-Term Evolving Patterns of Shared Electric Vehicle Networks. In Proceeding of the International Conference on Mobile Computing and Networking, MobiCom. Los Cabos, Mexico, 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  241. Han Wang, Hanbin Hong, Li Xiong, Zhan Qin, and Yuan Hong. 2022. PrivLBS: Local Differential Privacy for Location-Based Services with Staircase Randomized Response. In Proceedings of the ACM Conference on Computer and Communications Security.Google ScholarGoogle ScholarDigital LibraryDigital Library
  242. Hongjian Wang, Xianfeng Tang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2019. A simple baseline for travel time estimation using large-scale trip data. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2(2019), 1–22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. Haiming Wang, Zhikun Zhang, Tianhao Wang, Shibo He, Michael Backes, Jiming Chen, and Yang Zhang. 2023. PrivTrace: Differentially Private Trajectory Synthesis by Adaptive Markov Model. In USENIX Security.Google ScholarGoogle Scholar
  244. Haozhou Wang, Kai Zheng, Jiajie Xu, Bolong Zheng, Xiaofang Zhou, and Shazia Sadiq. 2014. Sharkdb: An in-memory column-oriented trajectory storage. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management. 1409–1418.Google ScholarGoogle ScholarDigital LibraryDigital Library
  245. Jingyuan Wang, Ning Wu, Xinxi Lu, Wayne Xin Zhao, and Kai Feng. 2021. Deep Trajectory Recovery with Fine-Grained Calibration using Kalman Filter. TKDE 33, 3 (2021), 921–934.Google ScholarGoogle Scholar
  246. Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. 2021. A Survey on Trajectory Data Management, Analytics, and Learning. ACM Comput. Surv. 54, 2, Article 39 (mar 2021), 36 pages. https://doi.org/10.1145/3440207Google ScholarGoogle ScholarDigital LibraryDigital Library
  247. Zhaonan Wang, Renhe Jiang, Hao Xue, Flora D Salim, Xuan Song, and Ryosuke Shibasaki. 2022. Event-Aware Multimodal Mobility Nowcasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.  36. 4228–4236.Google ScholarGoogle ScholarCross RefCross Ref
  248. Yu-Ting Wen, Po-Ruey Lei, Wen-Chih Peng, and Xiao-Fang Zhou. 2014. Exploring social influence on location-based social networks. In ICDM. IEEE, 1043–1048.Google ScholarGoogle Scholar
  249. Randall T Whitman, Bryan G Marsh, Michael B Park, and Erik G Hoel. 2019. Distributed spatial and spatio-temporal join on apache spark. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5, 1(2019), 1–28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  250. Lin Wu, Yongjun Xu, Qi Wang, Fei Wang, and Zhiwei Xu. 2017. Mapping Global Shipping Density from AIS Data. The Journal of Navigation 70, 1 (2017), 67–81. https://doi.org/10.1017/S0373463316000345Google ScholarGoogle ScholarCross RefCross Ref
  251. Yonghui Xiao and Li Xiong. 2015. Protecting locations with differential privacy under temporal correlations. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 1298–1309.Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. Jiyang Xie, Zeyu Song, Yupeng Li, Yanting Zhang, Hong Yu, Jinnan Zhan, Zhanyu Ma, Yuanyuan Qiao, Jianhua Zhang, and Jun Guo. 2018. A Survey on Machine Learning-Based Mobile Big Data Analysis: Challenges and Applications. Wirel. Commun. Mob. Comput. 2018 (2018), 8738613:1–8738613:19. https://doi.org/10.1155/2018/8738613Google ScholarGoogle ScholarCross RefCross Ref
  253. Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref, Susanne E. Hambrusch, and Sunil Prabhakar. 2004. Scalable Spatio-temporal Continuous Query Processing for Location-aware Services. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM 2004), 21-23 June 2004, Santorini Island, Greece. IEEE Computer Society, 317–326. https://doi.org/10.1109/SSDBM.2004.61Google ScholarGoogle ScholarCross RefCross Ref
  254. Jianqiu Xu, Ralf Hartmut Güting, and Yunjun Gao. 2018. Continuous k nearest neighbor queries over large multi-attribute trajectories: a systematic approach. GeoInformatica 22(2018), 723–766.Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. Hao Xue, Flora Salim, Yongli Ren, and Nuria Oliver. 2021. MobTCast: Leveraging Auxiliary Trajectory Forecasting for Human Mobility Prediction. Advances in Neural Information Processing Systems 34 (2021), 30380–30391.Google ScholarGoogle Scholar
  256. Hao Xue and Flora D Salim. 2021. TERMCast: Temporal relation modeling for effective urban flow forecasting. In Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021. Springer, 741–753.Google ScholarGoogle ScholarDigital LibraryDigital Library
  257. Chouchang Yang and Huai-Rong Shao. 2015. WiFi-based indoor positioning. IEEE Communications Magazine 53, 3 (2015), 150–157.Google ScholarGoogle ScholarDigital LibraryDigital Library
  258. Yu Yang, Fan Zhang, and Desheng Zhang. 2018. SharedEdge: GPS-Free Fine-Grained Travel Time Estimation in State-Level Highway Systems. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1 (2018), 48:1–48:26.Google ScholarGoogle ScholarDigital LibraryDigital Library
  259. Hongzhi Yin, Zhiting Hu, Xiaofang Zhou, Hao Wang, Kai Zheng, Quoc Viet Hung Nguyen, and Shazia Sadiq. 2016. Discovering interpretable geo-social communities for user behavior prediction. In ICDE. IEEE, 942–953.Google ScholarGoogle Scholar
  260. Haitao Yuan and Guoliang Li. 2021. A survey of traffic prediction: from spatio-temporal data to intelligent transportation. Data Science and Engineering 6 (2021), 63–85.Google ScholarGoogle ScholarCross RefCross Ref
  261. Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International conference on advances in geographic information systems. 99–108.Google ScholarGoogle ScholarDigital LibraryDigital Library
  262. Abbas Zaidi, Ritesh Ahuja, and Cyrus Shahabi. 2022. Differentially Private Occupancy Monitoring from WiFi Access Points. In 23rd IEEE International Conference on Mobile Data Management, MDM 2022, Paphos, Cyprus, June 6-9, 2022. IEEE, 361–366. https://doi.org/10.1109/MDM55031.2022.00081Google ScholarGoogle ScholarCross RefCross Ref
  263. Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S. Yu. 2017. Time Series Data Cleaning: From Anomaly Detection to Anomaly Repairing. PVLDB 10, 10 (2017), 1046–1057.Google ScholarGoogle ScholarDigital LibraryDigital Library
  264. Liming Zhang, Liang Zhao, and Dieter Pfoser. 2022. Factorized deep generative models for end-to-end trajectory generation with spatiotemporal validity constraints. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems. 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  265. Ping Zhang, Hui Zhang, and Danhuai Guo. 2015. Evacuation shelter and route selection based on multi-objective optimization approach. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management. 1–5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  266. Zhigang Zhang, Cheqing Jin, Jiali Mao, Xiaolin Yang, and Aoying Zhou. 2017. Trajspark: A scalable and efficient in-memory management system for big trajectory data. In Web and Big Data: First International Joint Conference, APWeb-WAIM 2017, Beijing, China, July 7–9, 2017, Proceedings, Part I 1. Springer, 11–26.Google ScholarGoogle ScholarCross RefCross Ref
  267. Kai Zhao, Sasu Tarkoma, Siyuan Liu, and Huy Vo. 2016. Urban human mobility data mining: An overview. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 1911–1920.Google ScholarGoogle ScholarCross RefCross Ref
  268. Sichen Zhao, Wei Shao, Jeffrey Chan, and Flora D Salim. 2022. Measuring disentangled generative spatio-temporal representation. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM). SIAM, 522–530.Google ScholarGoogle ScholarCross RefCross Ref
  269. Xiangguo Zhao, Yanhui Li, Ye Yuan, Xin Bi, and Guoren Wang. 2019. Ldpart: effective location-record data publication via local differential privacy. IEEE Access 7(2019), 31435–31445.Google ScholarGoogle ScholarCross RefCross Ref
  270. Kai Zheng, Yu Zheng, Xing Xie, and Xiaofang Zhou. 2012. Reducing Uncertainty of Low-Sampling-Rate Trajectories. In ICDE. 1144–1155.Google ScholarGoogle Scholar
  271. Yu Zheng. 2011. Location-based social networks: Users. In Computing with spatial trajectories. Springer, 243–276.Google ScholarGoogle Scholar
  272. Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST) 5, 3(2014), 1–55.Google ScholarGoogle ScholarDigital LibraryDigital Library
  273. Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A Collaborative Social Networking Service among User, location and trajectory. IEEE Data(base) Engineering Bulletin(June 2010). https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/Google ScholarGoogle Scholar
  274. Fan Zhou, Xin Liu, Kunpeng Zhang, and Goce Trajcevski. 2021. Toward Discriminating and Synthesizing Motion Traces Using Deep Probabilistic Generative Models. IEEE Transactions on Neural Networks and Learning Systems 32, 6(2021), 2401–2414. https://doi.org/10.1109/TNNLS.2020.3005325Google ScholarGoogle ScholarCross RefCross Ref
  275. Fan Zhou, Pengyu Wang, Xovee Xu, Wenxin Tai, and Goce Trajcevski. 2022. Contrastive Trajectory Learning for Tour Recommendation. ACM Trans. Intell. Syst. Technol. 13, 1 (2022), 4:1–4:25. https://doi.org/10.1145/3462331Google ScholarGoogle ScholarDigital LibraryDigital Library
  276. Fan Zhou, Xovee Xu, Goce Trajcevski, and Kunpeng Zhang. 2022. A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances. ACM Comput. Surv. 54, 2 (2022), 27:1–27:36. https://doi.org/10.1145/3433000Google ScholarGoogle ScholarDigital LibraryDigital Library
  277. Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James J. Q. Yu. 2023. DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model. In NeurIPS.Google ScholarGoogle Scholar
  278. Esteban Zimányi, Mahmoud Sakr, and Arthur Lesuisse. 2020. MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Trans. Database Syst. 45, 4 (dec 2020). https://doi.org/10.1145/3406534Google ScholarGoogle ScholarDigital LibraryDigital Library
  279. Andreas Züfle, Taylor Anderson, and Song Gao. 2022. Introduction to the Special Issue on Understanding the Spread of COVID-19, Part 1. ACM Transactions on Spatial Algorithms and Systems 8, 3 (2022), 1–5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  280. Andreas Züfle, Goce Trajcevski, Dieter Pfoser, Matthias Renz, Matthew T Rice, Timothy Leslie, Paul Delamater, and Tobias Emrich. 2017. Handling uncertainty in geo-spatial data. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 1467–1470.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Mobility Data Science: Perspectives and Challenges

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Spatial Algorithms and Systems
        ACM Transactions on Spatial Algorithms and Systems Just Accepted
        ISSN:2374-0353
        EISSN:2374-0361
        Table of Contents

        Copyright © 2024 Copyright held by the owner/author(s).

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Online AM: 7 May 2024
        • Accepted: 20 February 2024
        • Revised: 12 February 2024
        • Received: 7 August 2023
        Published in tsas Just Accepted

        Check for updates

        Qualifiers

        • research-article
      • Article Metrics

        • Downloads (Last 12 months)134
        • Downloads (Last 6 weeks)134

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader