skip to main content
survey

A Survey of Cutting-edge Multimodal Sentiment Analysis

Published:25 April 2024Publication History
Skip Abstract Section

Abstract

The rapid growth of the internet has reached the fourth generation, i.e., web 4.0, which supports Sentiment Analysis (SA) in many applications such as social media, marketing, risk management, healthcare, businesses, websites, data mining, e-learning, psychology, and many more. Sentiment analysis is a powerful tool for governments, businesses, and researchers to analyse users’ emotions and mental states in order to generate opinions and reviews about products, services, and daily activities. In the past years, several SA techniques based on Machine Learning (ML), Deep Learning (DL), and other soft computing approaches were proposed. However, growing data size, subjectivity, and diversity pose a significant challenge to enhancing the efficiency of existing techniques and incorporating current development trends, such as Multimodal Sentiment Analysis (MSA) and fusion techniques. With the aim of assisting the enthusiastic researcher to navigating the current trend, this article presents a comprehensive study of various literature to handle different aspects of SA, including current trends and techniques across multiple domains. In order to clarify the future prospects of MSA, this article also highlights open issues and research directions that lead to a number of unresolved challenges.

REFERENCES

  1. [1] Abdu Sarah A., Yousef Ahmed H., and Salem Ashraf. 2021. Multimodal video sentiment analysis using deep learning approaches, a survey. Information Fusion 76 (2021), 204226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Al-Saqqa Samar, Abdel-Nabi Heba, and Awajan Arafat. 2018. A survey of textual emotion detection. In 2018 8th International Conference on Computer Science and Information Technology (CSIT). IEEE, 136142.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Alam Firoj and Riccardi Giuseppe. 2014. Predicting personality traits using multimodal information. In Proceedings of the 2014 ACM Multi Media on Workshop on Computational Personality Recognition. 1518.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Alhagry Salma, Fahmy Aly Aly, and El-Khoribi Reda A.. 2017. Emotion recognition based on EEG using LSTM recurrent neural network. Emotion 8, 10 (2017), 355358.Google ScholarGoogle Scholar
  5. [5] Alswaidan Nourah and Menai Mohamed El Bachir. 2020. A survey of state-of-the-art approaches for emotion recognition in text. Knowledge and Information Systems (2020), 151.Google ScholarGoogle Scholar
  6. [6] Aneja Deepali, Chaudhuri Bindita, Colburn Alex, Faigin Gary, Shapiro Linda, and Mones Barbara. 2018. Learning to generate 3D stylized character expressions from humans. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 160169.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Athitsos Vassilis, Neidle Carol, Sclaroff Stan, Nash Joan, Stefan Alexandra, Yuan Quan, and Thangali Ashwin. 2008. The American Sign Language lexicon video dataset. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 18.Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Atrey Pradeep K., Hossain M. Anwar, Saddik Abdulmotaleb El, and Kankanhalli Mohan S.. 2010. Multimodal fusion for multimedia analysis: A survey. Multimedia Systems 16, 6 (2010), 345379.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Aytar Yusuf, Vondrick Carl, and Torralba Antonio. 2016. SoundNet: Learning sound representations from unlabeled video. In Advances in Neural Information Processing Systems. 892900.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Baccianella Stefano, Esuli Andrea, and Sebastiani Fabrizio. 2010. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In LREC, Vol. 10. 22002204.Google ScholarGoogle Scholar
  11. [11] Balahur Alexandra, Mihalcea Rada, and Montoyo Andrés. 2014. Computational approaches to subjectivity and sentiment analysis: Present and envisaged methods and applications. Computer Speech & Language 28, 1 (2014), 1–6.Google ScholarGoogle Scholar
  12. [12] Baltrušaitis Tadas, Robinson Peter, and Morency Louis-Philippe. 2016. OpenFace: An open source facial behavior analysis toolkit. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 110.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Bandhakavi Anil, Wiratunga Nirmalie, Massie Stewart, and Padmanabhan Deepak. 2017. Lexicon generation for emotion detection from text. IEEE Intelligent Systems 32, 1 (2017), 102108.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Biagioni Raoul. 2015. The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts. Ph. D. Dissertation. Springer.Google ScholarGoogle Scholar
  15. [15] Birjali Marouane, Kasri Mohammed, and Beni-Hssane Abderrahim. 2021. A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems 226 (2021), 107134.Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Birjandtalab Javad, Cogan Diana, Pouyan Maziyar Baran, and Nourani Mehrdad. 2016. A non-EEG biosignals dataset for assessment and visualization of neurological status. In 2016 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 110114.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Bloom Victoria, Makris Dimitrios, and Argyriou Vasileios. 2012. G3D: A gaming action dataset and real time action recognition evaluation framework. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 712.Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Boersma Paul and Heuven Vincent Van. 2001. Speak and unSpeak with PRAAT. Glot International 5, 9/10 (2001), 341347.Google ScholarGoogle Scholar
  19. [19] Boiy Erik and Moens Marie-Francine. 2009. A machine learning approach to sentiment analysis in multilingual Web texts. Information Retrieval 12, 5 (2009), 526558.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Bosselut Antoine, Rashkin Hannah, Sap Maarten, Malaviya Chaitanya, Celikyilmaz Asli, and Choi Yejin. 2019. COMET: Commonsense transformers for knowledge graph construction. In Association for Computational Linguistics (ACL) 4762–4779.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Bozhkov Lachezar, Koprinkova-Hristova Petia, and Georgieva Petia. 2016. Learning to decode human emotions with Echo State Networks. Neural Networks 78 (2016), 112119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Bravo-Marquez Felipe, Mendoza Marcelo, and Poblete Barbara. 2014. Meta-level sentiment models for big social data analysis. Knowledge-Based Systems 69 (2014), 8699.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Burkhardt Felix, Paeschke Astrid, Rolfes Miriam, Sendlmeier Walter F., and Weiss Benjamin. 2005. A database of German emotional speech. In Ninth European Conference on Speech Communication and Technology.Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Busso Carlos, Bulut Murtaza, Lee Chi-Chun, Kazemzadeh Abe, Mower Emily, Kim Samuel, Chang Jeannette N., Lee Sungbok, and Narayanan Shrikanth S.. 2008. IEMOCAP: Interactive emotional dyadic motion capture database. Language Resources and Evaluation 42, 4 (2008), 335.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Busso Carlos, Metallinou Angeliki, and Narayanan Shrikanth S.. 2011. Iterative feature normalization for emotional speech detection. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 56925695.Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Cambria Erik, Das Dipankar, Bandyopadhyay Sivaji, and Feraco Antonio. 2017. A Practical Guide to Sentiment Analysis. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Cambria Erik, Howard Newton, Hsu Jane, and Hussain Amir. 2013. Sentic blending: Scalable multimodal fusion for the continuous interpretation of semantics and sentics. In 2013 IEEE Symposium on Computational Intelligence for Human-Like Intelligence (CIHLI). IEEE, 108117.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Cambria Erik, Olsher Daniel, and Rajagopal Dheeraj. 2014. SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. 15151521.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Caridakis George, Moutselos Konstantinos, and Maglogiannis Ilias. 2013. Natural interaction expressivity modeling and analysis. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments. 16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Chatterjee Ankush, Narahari Kedhar Nath, Joshi Meghana, and Agrawal Puneet. 2019. SemEval-2019 Task 3: Emocontext contextual emotion detection in text. In Proceedings of the 13th International Workshop on Semantic Evaluation. 3948.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Chatterjere Arindam, Guptha Vineeth, Chopra Parul, and Das Amitava. 2020. Minority positive sampling for switching points-an anecdote for the code-mixing language modeling. In Proceedings of the 12th Language Resources and Evaluation Conference. 62286236.Google ScholarGoogle Scholar
  32. [32] Chatzakou Despoina, Vakali Athena, and Kafetsios Konstantinos. 2017. Detecting variation of emotions in online activities. Expert Systems with Applications 89 (2017), 318332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Chen Lawrence S., Tao Hai, Huang Thomas S., Miyasato Tsutomu, and Nakatsu Ryohei. 1998. Emotion recognition from audiovisual information. In 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No. 98EX175). IEEE, 8388.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Chen Mingyu, AlRegib Ghassan, and Juang Biing-Hwang. 2012. A new 6D motion gesture database and the benchmark results of feature-based statistical recognition. In 2012 IEEE International Conference on Emerging Signal Processing Applications. IEEE, 131134.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Chen Minghai, Wang Sen, Liang Paul Pu, Baltrušaitis Tadas, Zadeh Amir, and Morency Louis-Philippe. 2017. Multimodal sentiment analysis with word-level fusion and reinforcement learning. In Proceedings of the 19th ACM International Conference on Multimodal Interaction. 163171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. [36] Chen Tao, Borth Damian, Darrell Trevor, and Chang Shih-Fu. 2014. DeepSentiBank: Visual sentiment concept classification with deep convolutional neural networks. arXiv preprint arXiv:1410.8586 (2014).Google ScholarGoogle Scholar
  37. [37] Choi Eunsol, He He, Iyyer Mohit, Yatskar Mark, Yih Wen-tau, Choi Yejin, Liang Percy, and Zettlemoyer Luke. 2018. QuAC: Question answering in context. arXiv preprint arXiv:1808.07036 (2018).Google ScholarGoogle Scholar
  38. [38] Choi Yoonjung, Wiebe Janyce, and Mihalcea Rada. 2017. Coarse-grained+/-effect word sense disambiguation for implicit sentiment analysis. IEEE Transactions on Affective Computing 8, 4 (2017), 471479.Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Conly Christopher, Doliotis Paul, Jangyodsuk Pat, Alonzo Rommel, and Athitsos Vassilis. 2013. Toward a 3D body part detection video dataset and hand tracking benchmark. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments. 16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Cootes Timothy F., Edwards Gareth J., and Taylor Christopher J.. 2001. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 6 (2001), 681685.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Cuzzocrea Alfredo and Mumolo Enzo. 2021. Dempster-Shafer-based fusion of multi-modal biometrics for supporting identity verification effectively and efficiently. In 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS). IEEE, 18.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Silva Nadia F. F. Da, Hruschka Eduardo R., and Jr Estevam R. Hruschka. 2014. Tweet sentiment analysis with classifier ensembles. Decision Support Systems 66 (2014), 170179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Das Ringki and Singh Thoudam Doren. 2023. Multimodal sentiment analysis: A survey of methods, trends and challenges. Comput. Surveys (2023).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Datcu D. and Rothkrantz L.. 2009. Multimodal recognition of emotions in car environments. DCI&I 2009 (2009).Google ScholarGoogle Scholar
  45. [45] Datcu Dragos and Rothkrantz Leon J. M.. 2014. Semantic audio-visual data fusion for automatic emotion recognition. Emotion Recognition: A Pattern Analysis Approach (2014), 411435.Google ScholarGoogle Scholar
  46. [46] Almeida Alex Marino Goncalves de, Barbon Sylvio, and Paraiso Emerson Cabrera. 2016. Multi-class emotions classification by sentic levels as features in sentiment analysis. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 486491.Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Deng Lingjia. 2017. Entity/Event-Level Sentiment Detection and Inference. Ph. D. Dissertation. University of Pittsburgh.Google ScholarGoogle Scholar
  48. [48] Deng Lingjia and Wiebe Janyce. 2014. Sentiment propagation via implicature constraints. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. 377385.Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Deng Zhi-Hong, Luo Kun-Hu, and Yu Hong-Liang. 2014. A study of supervised term weighting scheme for sentiment analysis. Expert Systems with Applications 41, 7 (2014), 35063513.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Detti Paolo, Vatti Giampaolo, and Lara Garazi Zabalo Manrique de. 2020. EEG synchronization analysis for seizure prediction: A study on data of noninvasive recordings. Processes 8, 7 (2020), 846.Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] DeVault David, Artstein Ron, Benn Grace, Dey Teresa, Fast Ed, Gainer Alesia, Georgila Kallirroi, Gratch Jon, Hartholt Arno, Lhommet Margaux, Gale Lucas, Stacy Marsella, Fabrizio Morbini, Angela Nazarian, Stefan Scherer, Giota Stratou, Apar Suri, David Traum, Rachel Wood, Yuyu Xu, Albert Rizzo, and Louis-Philippe Morency. 2014. SimSensei Kiosk: A virtual human interviewer for healthcare decision support. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems. 10611068.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Dini Luca and Bittar André. 2016. Emotion analysis on Twitter: The hidden challenge. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). 39533958.Google ScholarGoogle Scholar
  53. [53] D’Mello Sidney K. and Kory Jacqueline. 2015. A review and meta-analysis of multimodal affect detection systems. ACM Computing Surveys (CSUR) 47, 3 (2015), 136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Dodds Peter Sheridan and Danforth Christopher M.. 2010. Measuring the happiness of large-scale written expression: Songs, blogs, and presidents. Journal of Happiness Studies 11, 4 (2010), 441456.Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Douiji Yasmina and Mousanif Hajar. 2015. I-CARE: Intelligent context aware system for recognizing emotions from text. In 2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA). IEEE, 15.Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Duchenne Olivier, Laptev Ivan, Sivic Josef, Bach Francis, and Ponce Jean. 2009. Automatic annotation of human actions in video. In 2009 IEEE 12th International Conference on Computer Vision. IEEE, 14911498.Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Ayadi Moataz El, Kamel Mohamed S., and Karray Fakhri. 2011. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition 44, 3 (2011), 572587.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Ellis Joseph G., Jou Brendan, and Chang Shih-Fu. 2014. Why we watch the news: A dataset for exploring sentiment in broadcast video news. In Proceedings of the 16th International Conference on Multimodal Interaction. 104111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Esuli Andrea and Sebastiani Fabrizio. 2006. SentiWordNet: A publicly available lexical resource for opinion mining.. In LREC, Vol. 6. Citeseer, 417422.Google ScholarGoogle Scholar
  60. [60] Eyben Florian, Wöllmer Martin, and Schuller Björn. 2009. OpenEAR–introducing the munich open-source emotion and affect recognition toolkit. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Farnadi Golnoosh, Sitaraman Geetha, Rohani Mehrdad, Kosinski Michal, Stillwell David, Moens Marie-Francine, Davalos Sergio, and Cock Martine De. 2014. How are you doing?: Emotions and personality in Facebook. In 2nd Workshop on Emotions and Personality in Personalized Services (EMPIRE 2014); Workshop at the 22nd Conference on User Modelling, Adaptation and Personalization (UMAP 2014). 4556.Google ScholarGoogle Scholar
  62. [62] Fellbaum Christiane (Ed.). 1998. WordNet: An Electronic Lexical Database. MIT Press.Google ScholarGoogle Scholar
  63. [63] Fernández-Caballero Antonio, Martínez-Rodrigo Arturo, Pastor José Manuel, Castillo José Carlos, Lozano-Monasor Elena, López María T., Zangróniz Roberto, Latorre José Miguel, and Fernández-Sotos Alicia. 2016. Smart environment architecture for emotion detection and regulation. Journal of Biomedical Informatics 64 (2016), 5573.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [64] Fothergill Simon, Mentis Helena, Kohli Pushmeet, and Nowozin Sebastian. 2012. Instructing people for training gestural interactive systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 17371746.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Fox Steve, Karnawat Kuldeep, Mydland Mark, Dumais Susan, and White Thomas. 2005. Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst. 23, 2 (April2005), 147168. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Friesen E. and Ekman Paul. 1978. Facial action coding system: A technique for the measurement of facial movement. Palo Alto 3 (1978).Google ScholarGoogle Scholar
  67. [67] Fulse Sujit, Sugandhi Rekha, and Mahajan Anjali. 2014. A survey on multimodal sentiment analysis. International Journal of Engineering Research and Technology 3, 11 (2014), 12331238.Google ScholarGoogle Scholar
  68. [68] Gaidon Adrien, Harchaoui Zaid, and Schmid Cordelia. 2011. Actom sequence models for efficient action detection. In CVPR 2011. IEEE, 32013208.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. [69] Gambäck Björn and Das Amitava. 2016. Comparing the level of code-switching in corpora. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). 18501855.Google ScholarGoogle Scholar
  70. [70] Gandhi Ankita, Adhvaryu Kinjal, Poria Soujanya, Cambria Erik, and Hussain Amir. 2023. Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion 91 (2023), 424444.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. [71] García-González Miguel A., Argelagós-Palau Ariadna, Fernández-Chimeno Mireya, and Ramos-Castro Juan. 2013. A comparison of heartbeat detectors for the seismocardiogram. In Computing in Cardiology 2013. IEEE, 461464.Google ScholarGoogle Scholar
  72. [72] García-Pablos Aitor, Cuadros Montse, and Rigau German. 2018. W2VLDA: Almost unsupervised system for aspect based sentiment analysis. Expert Systems with Applications 91 (2018), 127137.Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Gemmeke Jort F., Ellis Daniel P. W., Freedman Dylan, Jansen Aren, Lawrence Wade, Moore R. Channing, Plakal Manoj, and Ritter Marvin. 2017. Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 776780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. [74] Ghiassi Manoochehr, Skinner James, and Zimbra David. 2013. Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications 40, 16 (2013), 62666282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Ghimire Deepak and Lee Joonwhoan. 2013. Geometric feature-based facial expression recognition in image sequences using multi-class AdaBoost and support vector machines. Sensors 13, 6 (2013), 77147734.Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Ghimire Deepak, Lee Joonwhoan, Li Ze-Nian, Jeong Sunghwan, Park Sang Hyun, and Choi H. Sub. 2015. Recognition of facial expressions based on tracking and selection of discriminative geometric features. International Journal of Multimedia and Ubiquitous Engineering 10, 3 (2015), 3544.Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Gilbert Che and Hutto Erric. 2014. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth International Conference on Weblogs and Social Media (ICWSM-14), Vol. 81. 82.Google ScholarGoogle Scholar
  78. [78] Gkalelis Nikolaos, Kim Hansung, Hilton Adrian, Nikolaidis Nikos, and Pitas Ioannis. 2009. The i3DPost multi-view and 3D human action/interaction database. In 2009 Conference for Visual Media Production. IEEE, 159168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. [79] Gnjatovic Milan and Rosner Dietmar. 2010. Inducing genuine emotions in simulated speech-based human-machine interaction: The NIMITEK corpus. IEEE Transactions on Affective Computing 1, 2 (2010), 132144.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. [80] Gorelick Lena, Blank Moshe, Shechtman Eli, Irani Michal, and Basri Ronen. 2007. Actions as space-time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 12 (2007), 22472253.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. [81] Guerra-Filho Gutemberg and Biswas Arnab. 2012. The human motion database: A cognitive and parametric sampling of human motion. Image and Vision Computing 30, 3 (2012), 251261.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. [82] Gunes Hatice and Piccardi Massimo. 2005. Fusing face and body display for bi-modal emotion recognition: Single frame analysis and multi-frame post integration. In International Conference on Affective Computing and Intelligent Interaction. Springer, 102111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. [83] Gupta Shikha, Jaafar Jafreezal, and Ahmad Wan Fatimah Wan. 2012. Static hand gesture recognition using local Gabor filter. Procedia Engineering 41 (2012), 827832.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Habernal Ivan, Ptáček Tomáš, and Steinberger Josef. 2014. Supervised sentiment analysis in Czech social media. Information Processing & Management 50, 5 (2014), 693707.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. [85] Habimana Olivier, Li Yuhua, Li Ruixuan, Gu Xiwu, and Yu Ge. 2020. Sentiment analysis using deep learning approaches: An overview. Science China Information Sciences 63, 1 (2020), 136.Google ScholarGoogle ScholarCross RefCross Ref
  86. [86] Douiji yasmina, Mousannif Hajar, and Al Moatassime Hassan. 2016. Using YouTube comments for text-based emotion recognition. Procedia Computer Science 83 (2016), 292299.Google ScholarGoogle ScholarCross RefCross Ref
  87. [87] Han Kun, Yu Dong, and Tashev Ivan. 2014. Speech emotion recognition using deep neural network and extreme learning machine. In Interspeech. ISCA, 223–227.Google ScholarGoogle Scholar
  88. [88] Happy S. L., Patnaik Priyadarshi, Routray Aurobinda, and Guha Rajlakshmi. 2015. The Indian spontaneous expression database for emotion recognition. IEEE Transactions on Affective Computing 8, 1 (2015), 131142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. [89] Hartmann Ann-Kathrin, Tommaso Marx E., Moussallem D., Publio G., Valdestilhas A., Esteves D., and Neto C. B.. 2018. Generating a large dataset for neural question answering over the DBpedia knowledge base. In Workshop on Linked Data Management, WEBBR.Google ScholarGoogle Scholar
  90. [90] Hasan Maryam, Agu Emmanuel, and Rundensteiner Elke. 2014. Using hashtags as labels for supervised learning of emotions in Twitter messages. In ACM SIGKDD Workshop on Health Informatics, New York, USA.Google ScholarGoogle Scholar
  91. [91] Hasan Maryam, Rundensteiner Elke, and Agu Emmanuel. 2014. EMOTEX: Detecting emotions in Twitter messages. (2014).Google ScholarGoogle Scholar
  92. [92] Havasi Catherine, Speer Robert, and Pustejovsky James. 2009. Automatically suggesting semantic structure for a generative Lexicon ontology. In Proceedings of Fifth International Conference on Generative Approaches to the Lexicon.Google ScholarGoogle Scholar
  93. [93] Hernandez Javier, Paredes Pablo, Roseway Asta, and Czerwinski Mary. 2014. Under pressure: Sensing stress of computer users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 5160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. [94] Hershey Shawn, Chaudhuri Sourish, Ellis Daniel P. W., Gemmeke Jort F., Jansen Aren, Moore R. Channing, Plakal Manoj, Platt Devin, Saurous Rif A., Seybold Bryan, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. 2017. CNN architectures for large-scale audio classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 131135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. [95] Hogenboom Alexander, Heerschop Bas, Frasincar Flavius, Kaymak Uzay, and Jong Franciska de. 2014. Multi-lingual support for lexicon-based sentiment analysis guided by semantics. Decision Support Systems 62 (2014), 4353.Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Hong Yi, Li Quannan, Jiang Jiayan, and Tu Zhuowen. 2011. Learning a mixture of sparse distance metrics for classification and dimensionality reduction. In 2011 International Conference on Computer Vision. IEEE, 906913.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. [97] Hu Hao, Xu Ming-Xing, and Wu Wei. 2007. GMM supervector based SVM with spectral features for speech emotion recognition. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 4. IEEE, IV–413.Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Huang Faliang, Zhang Shichao, Zhang Jilian, and Yu Ge. 2017. Multimodal learning for topic sentiment analysis in microblogging. Neurocomputing 253 (2017), 144153.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. [99] Huang Gao, Liu Zhuang, Maaten Laurens van der, and Weinberger Kilian Q.. 2017. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 47004708.Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Huang Jie, Zhou Wengang, Li Houqiang, and Li Weiping. 2015. Sign language recognition using 3D convolutional neural networks. In 2015 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  101. [101] Hussien Wegdan A., Tashtoush Yahya M., Al-Ayyoub Mahmoud, and Al-Kabi Mohammed N.. 2016. Are emoticons good enough to train emotion classifiers of Arabic tweets?. In 2016 7th International Conference on Computer Science and Information Technology (CSIT). IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Imai Gary. 2005. Gestures: Body language and nonverbal communication. Retrieved Oct. 2020 (2005).Google ScholarGoogle Scholar
  103. [103] Imani Maryam and Montazer Gholam Ali. 2019. A survey of emotion recognition methods with emphasis on e-learning environments. Journal of Network and Computer Applications 147 (2019), 102423.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. [104] Indhuja K. and Reghu Raj P. C.. 2014. Fuzzy logic based sentiment analysis of product review documents. In 2014 First International Conference on Computational Systems and Communications (ICCSC). IEEE, 1822.Google ScholarGoogle ScholarCross RefCross Ref
  105. [105] Irfan M. Rizzo, Fauzi M. Ali, Tibyani T., and Mentari N. Dyah. 2018. Twitter sentiment analysis on 2013 curriculum using ensemble features and k-nearest neighbor. International Journal of Electrical and Computer Engineering (IJECE) 8, 6 (2018), 5409–14.Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] Jain Vinay Kumar, Kumar Shishir, and Fernandes Steven Lawrence. 2017. Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. Journal of Computational Science 21 (2017), 316326.Google ScholarGoogle ScholarCross RefCross Ref
  107. [107] Jatupaiboon Noppadon, Pan-ngum Setha, and Israsena Pasin. 2013. Real-time EEG-based happiness detection system. The Scientific World Journal 618649 (2013), 1–12.Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Jerritta S., Murugappan M., Nagarajan R., and Wan Khairunizam. 2011. Physiological signals based human emotion recognition: A review. In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications. IEEE, 410415.Google ScholarGoogle ScholarCross RefCross Ref
  109. [109] Jezewski Janusz, Matonia Adam, Kupka Tomasz, Roj Dawid, and Czabanski Robert. 2012. Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomedical Engineering/BiomedizinisTechnik 57, 5 (2012), 383394.Google ScholarGoogle Scholar
  110. [110] Johnson Alistair E. W., Pollard Tom J., Shen Lu, Li-Wei H. Lehman, Feng Mengling, Ghassemi Mohammad, Moody Benjamin, Szolovits Peter, Celi Leo Anthony, and Mark Roger G.. 2016. MIMIC-III, a freely accessible critical care database. Scientific Data 3, 1 (2016), 19.Google ScholarGoogle ScholarCross RefCross Ref
  111. [111] Jorgensen Julia, Miller George A., and Sperber Dan. 1984. Test of the mention theory of irony. Journal of Experimental Psychology: General 113, 1 (1984), 112.Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Joshi Aditya, Bhattacharyya Pushpak, and Carman Mark J.. 2017. Automatic sarcasm detection: A survey. ACM Computing Surveys (CSUR) 50, 5 (2017), 122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. [113] Joshi Aditya, Sharma Vinita, and Bhattacharyya Pushpak. 2015. Harnessing context incongruity for sarcasm detection. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). 757762.Google ScholarGoogle ScholarCross RefCross Ref
  114. [114] Kanade Takeo, Cohn Jeffrey F., and Tian Yingli. 2000. Comprehensive database for facial expression analysis. In Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580). IEEE, 4653.Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Kang Mangi, Ahn Jaelim, and Lee Kichun. 2018. Opinion mining using ensemble text hidden Markov models for text classification. Expert Systems with Applications 94 (2018), 218227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. [116] Kar Reshma, Chakraborty Aruna, Konar Amit, and Janarthanan Ramadoss. 2013. Emotion recognition system by gesture analysis using fuzzy sets. In International Conference on Swarm, Evolutionary, and Memetic Computing. Springer, 354363.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. [117] Karki Manohar, Liu Qun, DiBiano Robert, Basu Saikat, and Mukhopadhyay Supratik. 2018. Pixel-level reconstruction and classification for noisy handwritten Bangla characters. In 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE, 511516.Google ScholarGoogle ScholarCross RefCross Ref
  118. [118] Karyotis Charalampos, Doctor Faiyaz, Iqbal Rahat, James Anne, and Chang Victor. 2018. A fuzzy computational model of emotion for cloud based sentiment analysis. Information Sciences 433 (2018), 448463.Google ScholarGoogle ScholarCross RefCross Ref
  119. [119] Kemp Bob, Zwinderman Aeilko H., Tuk Bert, Kamphuisen Hilbert A. C., and Oberye Josefien J. L.. 2000. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering 47, 9 (2000), 11851194.Google ScholarGoogle ScholarCross RefCross Ref
  120. [120] Kim Jonghwa and André Elisabeth. 2008. Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 12 (2008), 20672083.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. [121] Kim Nam, Krasner Alex, Kosinski Colin, Wininger Michael, Qadri Maria, Kappus Zachary, Danish Shabbar, and Craelius William. 2016. Trending autoregulatory indices during treatment for traumatic brain injury. Journal of Clinical Monitoring and Computing 30, 6 (2016), 821831.Google ScholarGoogle ScholarCross RefCross Ref
  122. [122] Kim Sesong, Kim Dong-Wook, and Jung Seung-Won. 2017. Comparison and analysis of facial expression database. In Proceedings of the Korea Information Processing Society Conference. Korea Information Processing Society, 686687.Google ScholarGoogle Scholar
  123. [123] Kim Soo-Min and Hovy Eduard. 2006. Extracting opinions, opinion holders, and topics expressed in online news media text. In Proceedings of the Workshop on Sentiment and Subjectivity in Text. 18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. [124] Kim Tae-Kyun and Cipolla Roberto. 2008. Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 8 (2008), 14151428.Google ScholarGoogle Scholar
  125. [125] Kiritchenko Svetlana, Zhu Xiaodan, and Mohammad Saif M.. 2014. Sentiment analysis of short informal texts. Journal of Artificial Intelligence Research 50 (2014), 723762.Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Koelstra Sander, Muhl Christian, Soleymani Mohammad, Lee Jong-Seok, Yazdani Ashkan, Ebrahimi Touradj, Pun Thierry, Nijholt Anton, and Patras Ioannis. 2011. DEAP: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing 3, 1 (2011), 1831.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. [127] Kollias Dimitrios, Schulc Attila, Hajiyev Elnar, and Zafeiriou Stefanos. 2020. Analysing affective behavior in the first ABAW 2020 competition. arXiv preprint arXiv:2001.11409 (2020).Google ScholarGoogle Scholar
  128. [128] Kollias Dimitrios, Tzirakis Panagiotis, Nicolaou Mihalis A., Papaioannou Athanasios, Zhao Guoying, Schuller Björn, Kotsia Irene, and Zafeiriou Stefanos. 2019. Deep affect prediction in-the-wild: Aff-Wild database and challenge, deep architectures, and beyond. International Journal of Computer Vision 127, 6-7 (2019), 907929.Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. [129] Kollias Dimitrios and Zafeiriou Stefanos. 2019. Expression, affect, action unit recognition: Aff-Wild2, multi-task learning and ArcFace. arXiv preprint arXiv:1910.04855 (2019).Google ScholarGoogle Scholar
  130. [130] Kontopoulos Efstratios, Berberidis Christos, Dergiades Theologos, and Bassiliades Nick. 2013. Ontology-based sentiment analysis of Twitter posts. Expert Systems with Applications 40, 10 (2013), 40654074.Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. [131] Kouloumpis Efthymios, Wilson Theresa, and Moore Johanna. 2011. Twitter sentiment analysis: The good the bad and the OMG!. In Fifth International AAAI Conference on Weblogs and Social Media. Citeseer.Google ScholarGoogle Scholar
  132. [132] Kranjc Janez, Smailović Jasmina, Podpečan Vid, Grčar Miha, Žnidaršič Martin, and Lavrač Nada. 2015. Active learning for sentiment analysis on data streams: Methodology and workflow implementation in the ClowdFlows platform. Information Processing & Management 51, 2 (2015), 187203.Google ScholarGoogle ScholarCross RefCross Ref
  133. [133] Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E.. 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. 10971105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. [134] Kumar Akshi and Jaiswal Arunima. 2020. Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurrency and Computation: Practice and Experience 32, 1 (2020), e5107.Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Kumar Jyotish and kumar Jyoti. 2016. Affective modelling of users in HCI using EEG. Procedia Computer Science 84 (2016), 107114. DOI:Proceeding of the Seventh International Conference onIntelligent Human Computer Interaction (IHCI 2015).Google ScholarGoogle ScholarCross RefCross Ref
  136. [136] Kumar Nitin, Khaund Kaushikee, and Hazarika Shyamanta M.. 2016. Bispectral analysis of EEG for emotion recognition. Procedia Computer Science 84 (2016), 3135.Google ScholarGoogle ScholarCross RefCross Ref
  137. [137] Kuncheva Ludmila I.. 2002. A theoretical study on six classifier fusion strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 2 (2002), 281286.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. [138] Kurakin Alexey, Zhang Zhengyou, and Liu Zicheng. 2012. A real time system for dynamic hand gesture recognition with a depth sensor. In 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). IEEE, 19751979.Google ScholarGoogle Scholar
  139. [139] Kwon Oh-Wook, Chan Kwokleung, Hao Jiucang, and Lee Te-Won. 2003. Emotion recognition by speech signals. In Eighth European Conference on Speech Communication and Technology.Google ScholarGoogle ScholarCross RefCross Ref
  140. [140] Lahane Prashant and Sangaiah Arun Kumar. 2015. An approach to EEG based emotion recognition and classification using kernel density estimation. Procedia Computer Science 48 (2015), 574581.Google ScholarGoogle ScholarCross RefCross Ref
  141. [141] Lal Yash Kumar, Kumar Vaibhav, Dhar Mrinal, Shrivastava Manish, and Koehn Philipp. 2019. De-mixing sentiment from code-mixed text. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. 371377.Google ScholarGoogle ScholarCross RefCross Ref
  142. [142] Lalitha S., Patnaik Sahruday, Arvind T. H., Madhusudhan Vivek, and Tripathi Shikha. 2014. Emotion recognition through speech signal for human-computer interaction. In 2014 Fifth International Symposium on Electronic System Design. IEEE, 217218.Google ScholarGoogle ScholarCross RefCross Ref
  143. [143] Langner Oliver, Dotsch Ron, Bijlstra Gijsbert, Wigboldus Daniel H. J., Hawk Skyler T., and Ad van Knippenberg. 2010. Presentation and Validation of the Radboud Faces Database. Cognition and Emotion 24, 8 (2010), 13771388.Google ScholarGoogle ScholarCross RefCross Ref
  144. [144] Lau Raymond Y. K., Li Chunping, and Liao Stephen S. Y.. 2014. Social analytics: Learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decision Support Systems 65 (2014), 8094.Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. [145] Lee Chul Min and Narayanan Shrikanth S.. 2005. Toward detecting emotions in spoken dialogs. IEEE Transactions on Speech and Audio Processing 13, 2 (2005), 293303.Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Lee Sophia Yat Mei, Chen Ying, and Huang Chu-Ren. 2010. A text-driven rule-based system for emotion cause detection. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. 4553.Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. [147] Lee Sophia Yat Mei and Wang Zhongqing. 2015. Multi-view learning for emotion detection in code-switching texts. In 2015 International Conference on Asian Language Processing (IALP). IEEE, 9093.Google ScholarGoogle ScholarCross RefCross Ref
  148. [148] Lei Jingsheng, Rao Yanghui, Li Qing, Quan Xiaojun, and Wenyin Liu. 2014. Towards building a social emotion detection system for online news. Future Generation Computer Systems 37 (2014), 438448.Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. [149] Levallois Clement. 2013. Umigon: Sentiment analysis for tweets based on lexicons and heuristics. In Proceedings of the International Workshop on Semantic Evaluation, SemEval, Vol. 13, 1–4.Google ScholarGoogle Scholar
  150. [150] Li Hao and Lu Wei. 2017. Learning latent sentiment scopes for entity-level sentiment analysis. In AAAI. 34823489.Google ScholarGoogle ScholarCross RefCross Ref
  151. [151] Li Jiwei and Hovy Eduard. 2017. Reflections on sentiment/opinion analysis. In A Practical Guide to Sentiment Analysis. Springer, 4159.Google ScholarGoogle ScholarCross RefCross Ref
  152. [152] Li Li-Jia, Su Hao, Fei-Fei Li, and Xing Eric P.. 2010. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In Advances in Neural Information Processing Systems. 13781386.Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. [153] Li Xiaodong, Xie Haoran, Chen Li, Wang Jianping, and Deng Xiaotie. 2014. News impact on stock price return via sentiment analysis. Knowledge-Based Systems 69 (2014), 1423.Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. [154] Lian Zheng, Li Ya, Tao Jianhua, and Huang Jian. 2018. Investigation of multimodal features, classifiers and fusion methods for emotion recognition. arXiv preprint arXiv:1809.06225 (2018).Google ScholarGoogle Scholar
  155. [155] Liang Jiguang, Liu Ping, Tan Jianlong, and Bai Shuo. 2014. Sentiment classification based on AS-LDA model. In ITQM. 511516.Google ScholarGoogle ScholarCross RefCross Ref
  156. [156] Liao Jing, Bi Yaxin, and Nugent Chris. 2010. Using the Dempster–Shafer theory of evidence with a revised lattice structure for activity recognition. IEEE Transactions on Information Technology in Biomedicine 15, 1 (2010), 7482.Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. [157] Lin Yankai, Ji Haozhe, Liu Zhiyuan, and Sun Maosong. 2018. Denoising distantly supervised open-domain question answering. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 17361745.Google ScholarGoogle ScholarCross RefCross Ref
  158. [158] Lin Yi-Lin and Wei Gang. 2005. Speech emotion recognition based on HMM and SVM. In 2005 International Conference on Machine Learning and Cybernetics, Vol. 8. IEEE, 48984901.Google ScholarGoogle ScholarCross RefCross Ref
  159. [159] Lin Zhe, Jiang Zhuolin, and Davis Larry S.. 2009. Recognizing actions by shape-motion prototype trees. In 2009 IEEE 12th International Conference on Computer Vision. IEEE, 444451.Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Liu Bing. 2010. Sentiment analysis and subjectivity. Handbook of Natural Language Processing 2, 2010 (2010), 627666.Google ScholarGoogle Scholar
  161. [161] Liu Bing. 2012. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies 5, 1 (2012), 1167.Google ScholarGoogle ScholarCross RefCross Ref
  162. [162] Liu Bing and Zhang Lei. 2012. A survey of opinion mining and sentiment analysis. In Mining Text Data. Springer, 415463.Google ScholarGoogle ScholarCross RefCross Ref
  163. [163] Liu Cheng-Lin, Yin Fei, Wang Da-Han, and Wang Qiu-Feng. 2013. Online and offline handwritten Chinese character recognition: Benchmarking on new databases. Pattern Recognition 46, 1 (2013), 155162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. [164] Liu Jiamin, Su Yuanqi, and Liu Yuehu. 2017. Multi-modal emotion recognition with temporal-band attention based on LSTM-RNN. In Pacific Rim Conference on Multimedia. Springer, 194204.Google ScholarGoogle Scholar
  165. [165] Liu Li and Shao Ling. 2013. Learning discriminative representations from RGB-D video data. In Twenty-Third International Joint Conference on Artificial Intelligence.Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. [166] Liu Nianjun and Lovell Brian C.. 2003. Gesture classification using hidden Markov models and Viterbi path counting. In VIIth Digital Image Computing: Techniques and Applications. 273282.Google ScholarGoogle Scholar
  167. [167] Liu Qun, Collier Edward, and Mukhopadhyay Supratik. 2019. PCGAN-CHAR: Progressively trained classifier generative adversarial networks for classification of noisy handwritten Bangla characters. In International Conference on Asian Digital Libraries. Springer, 315.Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. [168] Liu Qian, Gao Zhiqiang, Liu Bing, and Zhang Yuanlin. 2015. Automated rule selection for aspect extraction in opinion mining. In Twenty-Fourth International Joint Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  169. [169] Liu Shuhua Monica and Chen Jiun-Hung. 2015. A multi-label classification based approach for sentiment classification. Expert Systems with Applications 42, 3 (2015), 10831093.Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. [170] Livingstone Steven R. and Russo Frank A.. 2018. The Ryerson audio-visual database of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PloS One 13, 5 (2018), e0196391.Google ScholarGoogle ScholarCross RefCross Ref
  171. [171] Llorens David, Prat Federico, Marzal Andrés, Vilar Juan Miguel, Castro María José, Amengual Juan-Carlos, Barrachina Sergio, Castellanos Antonio, Boquera Salvador Espana, Gómez Jon Ander, J. Gorbe, A. Gordo, V. Palazón, G. Peris, R. Ramos-Garijo, and F. Zamora. 2008. The UJIpenchars database: A pen-based database of isolated handwritten characters. In LREC.Google ScholarGoogle Scholar
  172. [172] Lloret Elena, Balahur Alexandra, Palomar Manuel, and Montoyo Andrés. 2009. Towards building a competitive opinion summarization system: Challenges and keys. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Student Research Workshop and Doctoral Consortium. 7277.Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. [173] Loconsole Claudio, Miranda Catarina Runa, Augusto Gustavo, Frisoli Antonio, and Orvalho Verónica. 2014. Real-time emotion recognition novel method for geometrical facial features extraction. In 2014 International Conference on Computer Vision Theory and Applications (VISAPP), Vol. 1. IEEE, 378385.Google ScholarGoogle Scholar
  174. [174] Lopatovska Irene. 2009. Emotional Aspects of the Online Information Retrieval Process. Ph. D. Dissertation. Rutgers University-Graduate School-New Brunswick.Google ScholarGoogle Scholar
  175. [175] Lopatovska Irene and Arapakis Ioannis. 2011. Theories, methods and current research on emotions in library and information science, information retrieval and human–computer interaction. Information Processing & Management 47, 4 (2011), 575592.Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. [176] Lucey Patrick, Cohn Jeffrey F., Kanade Takeo, Saragih Jason, Ambadar Zara, and Matthews Iain. 2010. The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. IEEE, 94101.Google ScholarGoogle ScholarCross RefCross Ref
  177. [177] Ma Chunling, Prendinger Helmut, and Ishizuka Mitsuru. 2005. Emotion estimation and reasoning based on affective textual interaction. In International Conference on Affective Computing and Intelligent Interaction. Springer, 622628.Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. [178] Madzlan Noor Alhusna, Han JingGuang, Bonin Francesca, and Campbell Nick. 2014. Automatic recognition of attitudes in video blogs–prosodic and visual feature analysis. In Fifteenth Annual Conference of the International Speech Communication Association. 18261830.Google ScholarGoogle Scholar
  179. [179] Mahbub Upal, Imtiaz Hafiz, Roy Tonmoy, Rahman Md. Shafiur, and Ahad Md. Atiqur Rahman. 2013. A template matching approach of one-shot-learning gesture recognition. Pattern Recognition Letters 34, 15 (2013), 17801788.Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. [180] Mahyoub Fawaz H. H., Siddiqui Muazzam A., and Dahab Mohamed Y.. 2014. Building an Arabic sentiment lexicon using semi-supervised learning. Journal of King Saud University-Computer and Information Sciences 26, 4 (2014), 417424.Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. [181] Majumder Anima, Behera Laxmidhar, and Subramanian Venkatesh K.. 2014. Emotion recognition from geometric facial features using self-organizing map. Pattern Recognition 47, 3 (2014), 12821293.Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. [182] Malatesta Lori, Asteriadis Stylianos, Caridakis George, Vasalou Asimina, and Karpouzis Kostas. 2016. Associating gesture expressivity with affective representations. Engineering Applications of Artificial Intelligence 51 (2016), 124135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. [183] Mansoorizadeh Muharram and Charkari Nasrollah Moghaddam. 2010. Multimodal information fusion application to human emotion recognition from face and speech. Multimedia Tools and Applications 49, 2 (2010), 277297.Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. [184] Mara Hubert, Hering Jan, and Kromker Susanne. 2009. GPU based optical character transcription for ancient inscription recognition. In 2009 15th International Conference on Virtual Systems and Multimedia. IEEE, 154159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. [185] Marin Giulio, Dominio Fabio, and Zanuttigh Pietro. 2014. Hand gesture recognition with leap motion and Kinect devices. In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 15651569.Google ScholarGoogle ScholarCross RefCross Ref
  186. [186] Marin Giulio, Dominio Fabio, and Zanuttigh Pietro. 2016. Hand gesture recognition with jointly calibrated leap motion and depth sensor. Multimedia Tools and Applications 75, 22 (2016), 1499115015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. [187] Marstawi Ali, Sharef Nurfadhlina Mohd, Aris Teh Noranis Mohd, and Mustapha Aida. 2017. Ontology-based aspect extraction for an improved sentiment analysis in summarization of product reviews. In Proceedings of the 8th International Conference on Computer Modeling and Simulation. 100104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. [188] Marszalek Marcin, Laptev Ivan, and Schmid Cordelia. 2009. Actions in context. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 29292936.Google ScholarGoogle ScholarCross RefCross Ref
  189. [189] Martin Olivier, Kotsia Irene, Macq Benoit, and Pitas Ioannis. 2006. The eNTERFACE’05 audio-visual emotion database. In 22nd International Conference on Data Engineering Workshops (ICDEW’06). IEEE, 88.Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. [190] Mathews Alexander, Xie Lexing, and He Xuming. 2015. SentiCap: Generating image descriptions with sentiments. arXiv preprint arXiv:1510.01431 (2015).Google ScholarGoogle Scholar
  191. [191] Matran-Fernandez Ana and Poli Riccardo. 2017. Towards the automated localisation of targets in rapid image-sifting by collaborative brain-computer interfaces. PLoS One 12, 5 (2017), e0178498.Google ScholarGoogle ScholarCross RefCross Ref
  192. [192] Mavadati S. Mohammad, Mahoor Mohammad H., Bartlett Kevin, Trinh Philip, and Cohn Jeffrey F.. 2013. DISFA: A spontaneous facial action intensity database. IEEE Transactions on Affective Computing 4, 2 (2013), 151160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. [193] Maynard Diana G. and Greenwood Mark A.. 2014. Who cares about sarcastic tweets? Investigating the impact of sarcasm on sentiment analysis. In LREC 2014 Proceedings. ELRA, 4238–4243.Google ScholarGoogle Scholar
  194. [194] McDuff Daniel, Kaliouby Rana El, Cohn Jeffrey F., and Picard Rosalind W.. 2014. Predicting ad liking and purchase intent: Large-scale analysis of facial responses to ads. IEEE Transactions on Affective Computing 6, 3 (2014), 223235.Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. [195] Mei Qiaozhu, Ling Xu, Wondra Matthew, Su Hang, and Zhai ChengXiang. 2007. Topic sentiment mixture: Modeling facets and opinions in Weblogs. In Proceedings of the 16th International Conference on World Wide Web. 171180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. [196] Meier Franziska, Theodorou Evangelos, Stulp Freek, and Schaal Stefan. 2011. Movement segmentation using a primitive library. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 34073412.Google ScholarGoogle ScholarCross RefCross Ref
  197. [197] Memo Alvise and Zanuttigh Pietro. 2018. Head-mounted gesture controlled interface for human-computer interaction. Multimedia Tools and Applications 77, 1 (2018), 2753.Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. [198] Mena-Chalco Jesús P., Velho Luiz, and Junior R. M. Cesar. 2011. 3D human face reconstruction using principal components spaces. In Proceedings of WTD SIBGRAPI Conference on Graphics, Patterns and Images, Vol. 6.Google ScholarGoogle Scholar
  199. [199] Messing Ross, Pal Chris, and Kautz Henry. 2009. Activity recognition using the velocity histories of tracked keypoints. In 2009 IEEE 12th International Conference on Computer Vision. IEEE, 104111.Google ScholarGoogle ScholarCross RefCross Ref
  200. [200] Mikio Y.. 1996. Interface system based on hand gestures and verbal expressions for 3-D shape generation, Terebijon Gakkaishi. Journal of the Institute of Television Engineers of Japan. v50 i10 (1996), 14821488.Google ScholarGoogle Scholar
  201. [201] Mikolov Tomas, Chen Kai, Corrado Greg, and Dean Jeffrey. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).Google ScholarGoogle Scholar
  202. [202] Memo Alvise, Ludovico Minto, and Pietro Zanuttigh. 2015. Exploiting silhouette descriptors and synthetic data for hand gesture recognition. In Smart Tools and Apps for Graphics-Eurographics Italian Chapter Conference. Eurographics, 15–23.Google ScholarGoogle Scholar
  203. [203] Mohammad Saif. 2012. # Emotional tweets. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012). 246255.Google ScholarGoogle Scholar
  204. [204] Mohammad Saif. 2018. Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 174184.Google ScholarGoogle ScholarCross RefCross Ref
  205. [205] Mohammad Saif, Bravo-Marquez Felipe, Salameh Mohammad, and Kiritchenko Svetlana. 2018. SemEval-2018 Task 1: Affect in tweets. In Proceedings of the 12th International Workshop on Semantic Evaluation. 117.Google ScholarGoogle ScholarCross RefCross Ref
  206. [206] Mohammad Saif and Turney Peter. 2010. Emotions evoked by common words and phrases: Using Mechanical Turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. 2634.Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. [207] Mohammad Saif M.. 2016. Sentiment analysis: Detecting valence, emotions, and other affectual states from text. In Emotion Measurement. Elsevier, 201237.Google ScholarGoogle ScholarCross RefCross Ref
  208. [208] Mohammad Saif M. and Bravo-Marquez Felipe. 2017. Emotion intensities in tweets. arXiv preprint arXiv:1708.03696 (2017).Google ScholarGoogle Scholar
  209. [209] Mohammad Saif M. and Turney Peter D.. 2013. Crowdsourcing a word–emotion association lexicon. Computational Intelligence 29, 3 (2013), 436465.Google ScholarGoogle ScholarCross RefCross Ref
  210. [210] Mollahosseini Ali, Hasani Behzad, and Mahoor Mohammad H.. 2017. AffectNet: A database for facial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective Computing 10, 1 (2017), 1831.Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. [211] Montejo-Raez Arturo, Díaz-Galiano Manuel Carlos, Martinez-Santiago Fernando, and Ureña-López L. A.. 2014. Crowd explicit sentiment analysis. Knowledge-Based Systems 69 (2014), 134139.Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. [212] Montejo-Ráez Arturo, Martínez-Cámara Eugenio, Martín-Valdivia M. Teresa, and Ureña-López L. Alfonso. 2014. Ranked WordNet graph for sentiment polarity classification in Twitter. Computer Speech & Language 28, 1 (2014), 93107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. [213] Moody G. B.. 2008. The physionet/computers in cardiology challenge 2008: T-wave alternans. In 2008 Computers in Cardiology. IEEE, 505508.Google ScholarGoogle ScholarCross RefCross Ref
  214. [214] Moraes Rodrigo, Valiati João. Francisco, and Neto Wilson P Gavião. 2013. Document-level sentiment classification: An empirical comparison between SVM and ANN. Expert Systems with Applications 40, 2 (2013), 621633.Google ScholarGoogle ScholarDigital LibraryDigital Library
  215. [215] Morency Louis-Philippe, Mihalcea Rada, and Doshi Payal. 2011. Towards multimodal sentiment analysis: Harvesting opinions from the web. In Proceedings of the 13th International Conference on Multimodal Interfaces. 169176.Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. [216] Mu-Chun S.. 2003. A neural network-based approach to recognizing 3D arm movement. Biomedical Engineering Application. Basis and Communication 15, 1 (2003), 1726.Google ScholarGoogle ScholarCross RefCross Ref
  217. [217] Nabil Mahmoud, Aly Mohamed, and Atiya Amir. 2015. ASTD: Arabic sentiment tweets dataset. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 25152519.Google ScholarGoogle ScholarCross RefCross Ref
  218. [218] Nagarajan Ramesh, Fan Zhigang, and Patel Shivang. 2008. Method for automated image indexing and retrieval. US Patent 7,324,711.Google ScholarGoogle Scholar
  219. [219] Nasoz Fatma, Alvarez Kaye, Lisetti Christine L., and Finkelstein Neal. 2004. Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work 6, 1 (2004), 414.Google ScholarGoogle ScholarDigital LibraryDigital Library
  220. [220] Neamatullah Ishna, Douglass Margaret M., Li-wei H. Lehman, Reisner Andrew, Villarroel Mauricio, Long William J., Szolovits Peter, Moody George B., Mark Roger G., and Clifford Gari D.. 2008. Automated de-identification of free-text medical records. BMC Medical Informatics and Decision Making 8, 1 (2008), 32.Google ScholarGoogle ScholarCross RefCross Ref
  221. [221] Neiberg Daniel, Elenius Kjell, and Laskowski Kornel. 2006. Emotion recognition in spontaneous speech using GMMs. In Ninth International Conference on Spoken Language Processing. 809–812.Google ScholarGoogle ScholarCross RefCross Ref
  222. [222] Nemati Shahla and Naghsh-Nilchi Ahmad Reza. 2017. Exploiting evidential theory in the fusion of textual, audio, and visual modalities for affective music video retrieval. In 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE, 222228.Google ScholarGoogle ScholarCross RefCross Ref
  223. [223] Neviarouskaya Alena, Prendinger Helmut, and Ishizuka Mitsuru. 2009. Compositionality principle in recognition of fine-grained emotions from text. In Third International AAAI Conference on Weblogs and Social Media.Google ScholarGoogle ScholarCross RefCross Ref
  224. [224] Neviarouskaya Alena, Prendinger Helmut, and Ishizuka Mitsuru. 2010. @AM: Textual attitude analysis model. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. 8088.Google ScholarGoogle Scholar
  225. [225] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang. 2018. MS MARCO: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268v3 (2018).Google ScholarGoogle Scholar
  226. [226] Nicolaou Mihalis A., Panagakis Yannis, Zafeiriou Stefanos, and Pantic Maja. 2014. Robust canonical correlation analysis: Audio-visual fusion for learning continuous interest. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 15221526.Google ScholarGoogle ScholarCross RefCross Ref
  227. [227] Oikonomou Vangelis P., Liaros Georgios, Georgiadis Kostantinos, Chatzilari Elisavet, Adam Katerina, Nikolopoulos Spiros, and Kompatsiaris Ioannis. 2016. Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs. arXiv preprint arXiv:1602.00904 (2016).Google ScholarGoogle Scholar
  228. [228] Ortigosa Alvaro, Martín José M., and Carro Rosa M.. 2014. Sentiment analysis in Facebook and its application to e-learning. Computers in Human Behavior 31 (2014), 527541.Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. [229] Owoputi Olutobi, O’Connor Brendan, Dyer Chris, Gimpel Kevin, Schneider Nathan, and Smith Noah A.. 2013. Improved part-of-speech tagging for online conversational text with word clusters. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 380390.Google ScholarGoogle Scholar
  230. [230] Paleari Marco and Huet Benoit. 2008. Toward emotion indexing of multimedia excerpts. In 2008 International Workshop on Content-Based Multimedia Indexing. IEEE, 425432.Google ScholarGoogle ScholarCross RefCross Ref
  231. [231] Pan Yixiong, Shen Peipei, and Shen Liping. 2012. Speech emotion recognition using support vector machine. International Journal of Smart Home 6, 2 (2012), 101108.Google ScholarGoogle Scholar
  232. [232] Patel Pavitra, Chaudhari Anand, Kale Ruchita, and Pund M.. 2017. Emotion recognition from speech with Gaussian mixture models & via boosted GMM. International Journal of Research In Science & Engineering 3 (2017), 47–53.Google ScholarGoogle Scholar
  233. [233] Pekrun Reinhard, Goetz Thomas, Frenzel Anne C., Barchfeld Petra, and Perry Raymond P.. 2011. Measuring emotions in students’ learning and performance: The achievement emotions questionnaire (AEQ). Contemporary Educational Psychology 36, 1 (2011), 3648.Google ScholarGoogle ScholarCross RefCross Ref
  234. [234] Perez-Gaspar Luis-Alberto, Caballero-Morales Santiago-Omar, and Trujillo-Romero Felipe. 2016. Multimodal emotion recognition with evolutionary computation for human-robot interaction. Expert Systems with Applications 66 (2016), 4261.Google ScholarGoogle ScholarDigital LibraryDigital Library
  235. [235] Pérez-Rosas Verónica, Mihalcea Rada, and Morency Louis-Philippe. 2013. Utterance-level multimodal sentiment analysis. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 973982.Google ScholarGoogle Scholar
  236. [236] Perikos Isidoros and Hatzilygeroudis Ioannis. 2013. Recognizing emotion presence in natural language sentences. In International Conference on Engineering Applications of Neural Networks. Springer, 3039.Google ScholarGoogle ScholarCross RefCross Ref
  237. [237] Peters Matthew E., Neumann Mark, Iyyer Mohit, Gardner Matt, Clark Christopher, Lee Kenton, and Zettlemoyer Luke. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018).Google ScholarGoogle Scholar
  238. [238] Pigou Lionel, Dieleman Sander, Kindermans Pieter-Jan, and Schrauwen Benjamin. 2014. Sign language recognition using convolutional neural networks. In European Conference on Computer Vision. Springer, 572578.Google ScholarGoogle Scholar
  239. [239] Poria Soujanya, Cambria Erik, Bajpai Rajiv, and Hussain Amir. 2017. A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion 37 (2017), 98125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  240. [240] Poria Soujanya, Cambria Erik, Howard Newton, Huang Guang-Bin, and Hussain Amir. 2016. Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174 (2016), 5059.Google ScholarGoogle ScholarDigital LibraryDigital Library
  241. [241] Poria Soujanya, Cambria Erik, Hussain Amir, and Huang Guang-Bin. 2015. Towards an intelligent framework for multimodal affective data analysis. Neural Networks 63 (2015), 104116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  242. [242] Poria Soujanya, Chaturvedi Iti, Cambria Erik, and Hussain Amir. 2016. Convolutional MKL based multimodal emotion recognition and sentiment analysis. In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 439448.Google ScholarGoogle ScholarCross RefCross Ref
  243. [243] Poria Soujanya, Gelbukh Alexander, Hussain Amir, Howard Newton, Das Dipankar, and Bandyopadhyay Sivaji. 2013. Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intelligent Systems 28, 2 (2013), 3138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  244. [244] Poria Soujanya, Hazarika Devamanyu, Majumder Navonil, and Mihalcea Rada. 2020. Beneath the Tip of the Iceberg: Current challenges and new directions in sentiment analysis research. arXiv preprint arXiv:2005.00357 (2020).Google ScholarGoogle Scholar
  245. [245] Poria Soujanya, Peng Haiyun, Hussain Amir, Howard Newton, and Cambria Erik. 2017. Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis. Neurocomputing 261 (2017), 217230.Google ScholarGoogle ScholarCross RefCross Ref
  246. [246] Preoţiuc-Pietro Daniel, Schwartz H. Andrew, Park Gregory, Eichstaedt Johannes, Kern Margaret, Ungar Lyle, and Shulman Elisabeth. 2016. Modelling valence and arousal in Facebook posts. In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. 915.Google ScholarGoogle ScholarCross RefCross Ref
  247. [247] Ptaszynski Michal, Rzepka Rafal, Araki Kenji, and Momouchi Yoshio. 2014. Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis. Computer Speech & Language 28, 1 (2014), 3855.Google ScholarGoogle ScholarDigital LibraryDigital Library
  248. [248] Qiao Rui, Qing Chunmei, Zhang Tong, Xing Xiaofen, and Xu Xiangmin. 2017. A novel deep-learning based framework for multi-subject emotion recognition. In 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). IEEE, 181185.Google ScholarGoogle ScholarCross RefCross Ref
  249. [249] Qiu Guang, Liu Bing, Bu Jiajun, and Chen Chun. 2011. Opinion word expansion and target extraction through double propagation. Computational Linguistics 37, 1 (2011), 927. DOI:. arXiv:https://doi.org/10.1162/coli_a_00034Google ScholarGoogle ScholarDigital LibraryDigital Library
  250. [250] Qiu Jiezhong, Tang Jian, Ma Hao, Dong Yuxiao, Wang Kuansan, and Tang Jie. 2018. DeepInf: Social influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 21102119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  251. [251] Quan Xiaojun, Wang Qifan, Zhang Ying, Si Luo, and Wenyin Liu. 2015. Latent discriminative models for social emotion detection with emotional dependency. ACM Transactions on Information Systems (TOIS) 34, 1 (2015), 119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. [252] Rajpurkar Pranav, Zhang Jian, Lopyrev Konstantin, and Liang Percy. 2016. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016).Google ScholarGoogle Scholar
  253. [253] Rana Ranjeeta and Kolhe Vaishali. 2015. Analysis of students emotion for Twitter data using Naïve Bayes and non linear support vector machine approachs. International Journal on Recent and Innovation Trends in Computing and Communication. ISSN (2015), 23218169.Google ScholarGoogle Scholar
  254. [254] Rani Pramila, Liu Changchun, Sarkar Nilanjan, and Vanman Eric. 2006. An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Analysis and Applications 9, 1 (2006), 5869.Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. [255] Rao K. Sreenivasa, Saroj V. K., Maity Sudhamay, and Koolagudi Shashidhar G.. 2011. Recognition of emotions from video using neural network models. Expert Systems with Applications 38, 10 (2011), 1318113185.Google ScholarGoogle ScholarDigital LibraryDigital Library
  256. [256] Rao Yanghui, Xie Haoran, Li Jun, Jin Fengmei, Wang Fu Lee, and Li Qing. 2016. Social emotion classification of short text via topic-level maximum entropy model. Information & Management 53, 8 (2016), 978986.Google ScholarGoogle ScholarDigital LibraryDigital Library
  257. [257] Reddy Siva, Chen Danqi, and Manning Christopher D.. 2019. CoQA: A conversational question answering challenge. Transactions of the Association for Computational Linguistics 7 (2019), 249266.Google ScholarGoogle ScholarCross RefCross Ref
  258. [258] Ren Zhou, Meng Jingjing, Yuan Junsong, and Zhang Zhengyou. 2011. Robust hand gesture recognition with Kinect sensor. In Proceedings of the 19th ACM International Conference on Multimedia. 759760.Google ScholarGoogle ScholarDigital LibraryDigital Library
  259. [259] Reynolds Douglas A. and Rose Richard C.. 1995. Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing 3, 1 (1995), 7283.Google ScholarGoogle ScholarCross RefCross Ref
  260. [260] Rill Sven, Reinel Dirk, Scheidt Jörg, and Zicari Roberto V.. 2014. PoliTwi: Early detection of emerging political topics on Twitter and the impact on concept-level sentiment analysis. Knowledge-Based Systems 69 (2014), 2433.Google ScholarGoogle ScholarDigital LibraryDigital Library
  261. [261] Rodriguez Mikel D., Ahmed Javed, and Shah Mubarak. 2008. Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 18.Google ScholarGoogle ScholarCross RefCross Ref
  262. [262] Rong Wenge, Nie Yifan, Ouyang Yuanxin, Peng Baolin, and Xiong Zhang. 2014. Auto-encoder based bagging architecture for sentiment analysis. Journal of Visual Languages & Computing 25, 6 (2014), 840849.Google ScholarGoogle ScholarDigital LibraryDigital Library
  263. [263] Rosas Verónica Pérez, Mihalcea Rada, and Morency Louis-Philippe. 2013. Multimodal sentiment analysis of Spanish online videos. IEEE Intelligent Systems 28, 3 (2013), 3845.Google ScholarGoogle ScholarDigital LibraryDigital Library
  264. [264] Roy Tanmoy, Marwala Tshilidzi, and Chakraverty Snehashish. 2020. A survey of classification techniques in speech emotion recognition. Mathematical Methods in Interdisciplinary Sciences (2020), 3348.Google ScholarGoogle ScholarCross RefCross Ref
  265. [265] Ruffieux Simon, Lalanne Denis, and Mugellini Elena. 2013. ChAirGest: A challenge for multimodal mid-air gesture recognition for close HCI. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction. 483488.Google ScholarGoogle ScholarDigital LibraryDigital Library
  266. [266] Rustamov Samir, Mustafayev Elshan, and Clements Mark A.. 2013. Sentiment analysis using neuro-fuzzy and hidden Markov models of text. In 2013 Proceedings of IEEE Southeastcon. IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  267. [267] Saeed Anwar, Al-Hamadi Ayoub, Niese Robert, and Elzobi Moftah. 2014. Frame-based facial expression recognition using geometrical features. Advances in Human-Computer Interaction (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  268. [268] Sailunaz Kashfia, Dhaliwal Manmeet, Rokne Jon, and Alhajj Reda. 2018. Emotion detection from text and speech: A survey. Social Network Analysis and Mining 8, 1 (2018), 28.Google ScholarGoogle ScholarCross RefCross Ref
  269. [269] Sander David, Grandjean Didier, and Scherer Klaus R.. 2005. A systems approach to appraisal mechanisms in emotion. Neural Networks 18, 4 (2005), 317352.Google ScholarGoogle ScholarDigital LibraryDigital Library
  270. [270] Sariyanidi Evangelos, Gunes Hatice, and Cavallaro Andrea. 2014. Automatic analysis of facial affect: A survey of registration, representation, and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 6 (2014), 11131133.Google ScholarGoogle ScholarDigital LibraryDigital Library
  271. [271] Sarkar Chandrima, Bhatia Sumit, Agarwal Arvind, and Li Juan. 2014. Feature analysis for computational personality recognition using YouTube personality data set. In Proceedings of the 2014 ACM Multi Media on Workshop on Computational Personality Recognition. 1114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  272. [272] Schaaff Kristina and Schultz Tanja. 2009. Towards emotion recognition from electroencephalographic signals. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  273. [273] Schalk Gerwin, McFarland Dennis J., Hinterberger Thilo, Birbaumer Niels, and Wolpaw Jonathan R.. 2004. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering 51, 6 (2004), 10341043.Google ScholarGoogle ScholarCross RefCross Ref
  274. [274] Scheirer Jocelyn, Fernandez Raul, Klein Jonathan, and Picard Rosalind W.. 2002. Frustrating the user on purpose: A step toward building an affective computer. Interacting with Computers 14, 2 (2002), 93118.Google ScholarGoogle ScholarCross RefCross Ref
  275. [275] Schouten Kim and Frasincar Flavius. 2015. Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering 28, 3 (2015), 813830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  276. [276] Schuller Björn, Rigoll Gerhard, and Lang Manfred. 2004. Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture. In 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1. IEEE, I–577.Google ScholarGoogle ScholarCross RefCross Ref
  277. [277] Sebe Nicu, Cohen Ira, Gevers Theo, and Huang Thomas S.. 2005. Multimodal approaches for emotion recognition: A survey. In Internet Imaging VI, Vol. 5670. International Society for Optics and Photonics, 5667.Google ScholarGoogle ScholarCross RefCross Ref
  278. [278] SeetaFace. 2020. SeetaFaceEngine. https://github.com/seetaface/SeetaFaceEngineAccessed: 2024-03-08.Google ScholarGoogle Scholar
  279. [279] Shan Caifeng, Gong Shaogang, and McOwan Peter W.. 2007. Beyond facial expressions: Learning human emotion from body gestures. In BMVC. 110.Google ScholarGoogle ScholarCross RefCross Ref
  280. [280] Sharma Karan, Castellini Claudio, Broek Egon L. van den, Albu-Schaeffer Alin, and Schwenker Friedhelm. 2019. A dataset of continuous affect annotations and physiological signals for emotion analysis. Scientific Data 6, 1 (2019), 113.Google ScholarGoogle ScholarCross RefCross Ref
  281. [281] Sharma Rakhee, Tan Ngoc Le, and Sadat Fatiha. 2018. Multimodal sentiment analysis using deep learning. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 14751478.Google ScholarGoogle ScholarCross RefCross Ref
  282. [282] Sheeba J. I. and Vivekanandan K.. 2014. A fuzzy logic based on sentiment classification. International Journal of Data Mining & Knowledge Management Process 4, 4 (2014), 27.Google ScholarGoogle ScholarCross RefCross Ref
  283. [283] Shimizu Masaki, Yoshizuka Takeharu, and Miyamoto Hiroyuki. 2007. A gesture recognition system using stereo vision and arm model fitting. In International Congress Series, Vol. 1301. Elsevier, 8992.Google ScholarGoogle ScholarCross RefCross Ref
  284. [284] Shin Dongmin, Shin Dongil, and Shin Dongkyoo. 2017. Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimedia Tools and Applications 76, 9 (2017), 1144911470.Google ScholarGoogle ScholarDigital LibraryDigital Library
  285. [285] Shivhare Shiv Naresh, Garg Shakun, and Mishra Anitesh. 2015. EmotionFinder: Detecting emotion from blogs and textual documents. In International Conference on Computing, Communication & Automation. IEEE, 5257.Google ScholarGoogle ScholarCross RefCross Ref
  286. [286] Shoeb Ali Hossam. 2009. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph. D. Dissertation. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  287. [287] Shu Lin, Xie Jinyan, Yang Mingyue, Li Ziyi, Li Zhenqi, Liao Dan, Xu Xiangmin, and Yang Xinyi. 2018. A review of emotion recognition using physiological signals. Sensors 18, 7 (2018), 2074.Google ScholarGoogle ScholarCross RefCross Ref
  288. [288] Shu Lei, Xu Hu, and Liu Bing. 2017. Lifelong learning CRF for supervised aspect extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Association for Computational Linguistics. 148154. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  289. [289] Siddiquie Behjat, Chisholm Dave, and Divakaran Ajay. 2015. Exploiting multimodal affect and semantics to identify politically persuasive web videos. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. 203210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  290. [290] Sigal Leonid, Balan Alexandru O., and Black Michael J.. 2010. HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision 87, 1-2 (2010), 4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  291. [291] Sikandar Marjan. 2014. A survey for multimodal sentiment analysis methods. International Journal Computer Technology & Applications 5, 4 (2014), 14701476.Google ScholarGoogle Scholar
  292. [292] Simonyan Karen and Zisserman Andrew. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).Google ScholarGoogle Scholar
  293. [293] Singh Nikhil Kumar, Tomar Deepak Singh, and Sangaiah Arun Kumar. 2020. Sentiment analysis: A review and comparative analysis over social media. Journal of Ambient Intelligence and Humanized Computing 11, 1 (2020), 97117.Google ScholarGoogle ScholarCross RefCross Ref
  294. [294] Singh Shivendra and Benedict Shajulin. 2019. Indian semi-acted facial expression (iSAFE) dataset for human emotions recognition. In International Symposium on Signal Processing and Intelligent Recognition Systems. Springer, 150162.Google ScholarGoogle Scholar
  295. [295] Sneddon Ian, McRorie Margaret, McKeown Gary, and Hanratty Jennifer. 2011. The Belfast induced natural emotion database. IEEE Transactions on Affective Computing 3, 1 (2011), 3241.Google ScholarGoogle ScholarDigital LibraryDigital Library
  296. [296] Soleymani Mohammad, Garcia David, Jou Brendan, Schuller Björn, Chang Shih-Fu, and Pantic Maja. 2017. A survey of multimodal sentiment analysis. Image and Vision Computing 65 (2017), 314.Google ScholarGoogle ScholarCross RefCross Ref
  297. [297] Soleymani Mohammad, Pantic Maja, and Pun Thierry. 2011. Multimodal emotion recognition in response to videos. IEEE Transactions on Affective Computing 3, 2 (2011), 211223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  298. [298] Song Mingli, You Mingyu, Li Na, and Chen Chun. 2008. A robust multimodal approach for emotion recognition. Neurocomputing 71, 10-12 (2008), 19131920.Google ScholarGoogle ScholarDigital LibraryDigital Library
  299. [299] Song Yale, Demirdjian David, and Davis Randall. 2011. Tracking body and hands for gesture recognition: NATOPS aircraft handling signals database. In Face and Gesture 2011. IEEE, 500506.Google ScholarGoogle ScholarCross RefCross Ref
  300. [300] Soru Tommaso, Marx Edgard, Moussallem Diego, Publio Gustavo, Valdestilhas André, Esteves Diego, and Neto Ciro Baron. 2017. SPARQL as a foreign language. arXiv preprint arXiv:1708.07624 (2017).Google ScholarGoogle Scholar
  301. [301] Speer Robert and Havasi Catherine. 2013. ConceptNet 5: A large semantic network for relational knowledge. In The People’s Web Meets NLP. Springer, 161176.Google ScholarGoogle ScholarCross RefCross Ref
  302. [302] Strapparava Carlo and Mihalcea Rada. 2008. Learning to identify emotions in text. In Proceedings of the 2008 ACM Symposium on Applied Computing. 15561560.Google ScholarGoogle ScholarDigital LibraryDigital Library
  303. [303] Strapparava Carlo and Valitutti Alessandro. 2004. WordNet affect: An affective extension of WordNet. In LREC, Vol. 4. Citeseer, 40.Google ScholarGoogle Scholar
  304. [304] Sun Boyuan, Ma Qiang, Zhang Shanfeng, Liu Kebin, and Liu Yunhao. 2017. iSelf: Towards cold-start emotion labeling using transfer learning with smartphones. ACM Transactions on Sensor Networks (TOSN) 13, 4 (2017), 122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  305. [305] Sun Kai, Yu Dian, Yu Dong, and Cardie Claire. 2018. Improving machine reading comprehension with general reading strategies. arXiv preprint arXiv:1810.13441 (2018).Google ScholarGoogle Scholar
  306. [306] Šuster Simon and Daelemans Walter. 2018. CliCR: A dataset of clinical case reports for machine reading comprehension. arXiv preprint arXiv:1803.09720 (2018).Google ScholarGoogle Scholar
  307. [307] Sweeney Kevin T., Ayaz Hasan, Ward Tomás E., Izzetoglu Meltem, McLoone Seán F., and Onaral Banu. 2012. A methodology for validating artifact removal techniques for physiological signals. IEEE Transactions on Information Technology in Biomedicine 16, 5 (2012), 918926.Google ScholarGoogle ScholarDigital LibraryDigital Library
  308. [308] Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, and Wojna Zbigniew. 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 28182826.Google ScholarGoogle ScholarCross RefCross Ref
  309. [309] Tang E. Ke, Suganthan Ponnuthurai N., Yao Xin, and Qin A. Kai. 2005. Linear dimensionality reduction using relevance weighted LDA. Pattern Recognition 38, 4 (2005), 485493.Google ScholarGoogle ScholarDigital LibraryDigital Library
  310. [310] Tay Yi, Tuan Luu Anh, and Hui Siu Cheung. 2017. Dyadic memory networks for aspect-based sentiment analysis. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 107116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  311. [311] Taylor Graham W., Fergus Rob, LeCun Yann, and Bregler Christoph. 2010. Convolutional learning of spatio-temporal features. In European Conference on Computer Vision. Springer, 140153.Google ScholarGoogle ScholarDigital LibraryDigital Library
  312. [312] Tenorth Moritz, Bandouch Jan, and Beetz Michael. 2009. The TUM kitchen data set of everyday manipulation activities for motion tracking and action recognition. In 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 10891096.Google ScholarGoogle ScholarCross RefCross Ref
  313. [313] Thakor Pratik and Sasi Sreela. 2015. Ontology-based sentiment analysis process for social media content. In INNS Conference on Big Data. 199207.Google ScholarGoogle ScholarCross RefCross Ref
  314. [314] Thelwall Mike, Buckley Kevan, Paltoglou Georgios, Cai Di, and Kappas Arvid. 2010. Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology 61, 12 (2010), 25442558.Google ScholarGoogle ScholarCross RefCross Ref
  315. [315] Thoma Martin. 2017. The HASYv2 dataset. arXiv preprint arXiv:1701.08380 (2017).Google ScholarGoogle Scholar
  316. [316] Tran Du and Sorokin Alexander. 2008. Human activity recognition with metric learning. In European Conference on Computer Vision. Springer, 548561.Google ScholarGoogle ScholarDigital LibraryDigital Library
  317. [317] Tripathi Vaibhav, Joshi Aditya, and Bhattacharyya Pushpak. 2016. Emotion analysis from text: A survey. Center for Indian Language Technology Surveys 11, 8 (2016), 6669.Google ScholarGoogle Scholar
  318. [318] Trischler Adam, Wang Tong, Yuan Xingdi, Harris Justin, Sordoni Alessandro, Bachman Philip, and Suleman Kaheer. 2016. NewsQA: A machine comprehension dataset. arXiv preprint arXiv:1611.09830 (2016).Google ScholarGoogle Scholar
  319. [319] Tsur Oren, Davidov Dmitry, and Rappoport Ari. 2010. ICWSM-A great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In ICWSM. Washington, DC, 162169.Google ScholarGoogle ScholarCross RefCross Ref
  320. [320] Udochukwu Orizu and He Yulan. 2015. A rule-based approach to implicit emotion detection in text. In International Conference on Applications of Natural Language to Information Systems. Springer, 197203.Google ScholarGoogle ScholarCross RefCross Ref
  321. [321] Valstar Michel and Pantic Maja. 2010. Induced disgust, happiness and surprise: An addition to the MMI facial expression database. In Proc. 3rd Intern. Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect. 65.Google ScholarGoogle Scholar
  322. [322] Várkonyi-Kóczy Annamária R. and Tusor Balázs. 2011. Human–computer interaction for smart environment applications using fuzzy hand posture and gesture models. IEEE Transactions on Instrumentation and Measurement 60, 5 (2011), 15051514.Google ScholarGoogle ScholarCross RefCross Ref
  323. [323] Veeraraghavan Ashok, Chellappa Rama, and Roy-Chowdhury Amit K.. 2006. The function space of an activity. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 1. IEEE, 959968.Google ScholarGoogle ScholarDigital LibraryDigital Library
  324. [324] Verma Gyanendra K. and Tiwary Uma Shanker. 2014. Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102 (2014), 162172.Google ScholarGoogle ScholarCross RefCross Ref
  325. [325] Ververidis Dimitrios and Kotropoulos Constantine. 2006. Emotional speech recognition: Resources, features, and methods. Speech Communication 48, 9 (2006), 11621181.Google ScholarGoogle ScholarCross RefCross Ref
  326. [326] Vicente Jose, Zusterzeel Robbert, Johannesen Lars, Ochoa-Jimenez Roberto, Mason Jay W., Sanabria Carlos, Kemp Sarah, Sager Philip T., Patel Vikram, Matta Murali K., Jiang Liu, Jeffry Florian, Christine Garnett, Norman Stockbridge, and David G. Strauss. 2019. Assessment of multi-ion channel block in a phase i randomized study design: Results of the Ci PA phase i ECG biomarker validation study. Clinical Pharmacology & Therapeutics 105, 4 (2019), 943953.Google ScholarGoogle ScholarCross RefCross Ref
  327. [327] Vilares David, Gómez-Rodríguez Carlos, and Alonso Miguel A.. 2017. Universal, unsupervised (rule-based), uncovered sentiment analysis. Knowledge-Based Systems 118 (2017), 4555.Google ScholarGoogle ScholarCross RefCross Ref
  328. [328] Wang Da-Han, Liu Cheng-Lin, Yu Jin-Lun, and Zhou Xiang-Dong. 2009. CASIA-OLHWDB1: A database of online handwritten Chinese characters. In 2009 10th International Conference on Document Analysis and Recognition. IEEE, 12061210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  329. [329] Wang Gang, Zhang Zhu, Sun Jianshan, Yang Shanlin, and Larson Catherine A.. 2015. POS-RS: A random subspace method for sentiment classification based on part-of-speech analysis. Information Processing & Management 51, 4 (2015), 458479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  330. [330] Wang Haohan, Meghawat Aaksha, Morency Louis-Philippe, and Xing Eric P.. 2017. Select-additive learning: Improving generalization in multimodal sentiment analysis. In 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 949954.Google ScholarGoogle ScholarCross RefCross Ref
  331. [331] Wang Hongwei, Zhang Fuzheng, Hou Min, Xie Xing, Guo Minyi, and Liu Qi. 2018. SHINE: Signed heterogeneous information network embedding for sentiment link prediction. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. 592600.Google ScholarGoogle ScholarDigital LibraryDigital Library
  332. [332] Wang Jeen-Shing, Lin Che-Wei, and Yang Ya-Ting C.. 2013. A k-nearest-neighbor classifier with heart rate variability feature-based transformation algorithm for driving stress recognition. Neurocomputing 116 (2013), 136143.Google ScholarGoogle ScholarCross RefCross Ref
  333. [333] Wang Yequan, Huang Minlie, Zhu Xiaoyan, and Zhao Li. 2016. Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 606615.Google ScholarGoogle ScholarCross RefCross Ref
  334. [334] Wang Yujing and Mo Jianlin. 2013. Emotion feature selection from physiological signals using tabu search. In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 31483150.Google ScholarGoogle ScholarCross RefCross Ref
  335. [335] Wankhade Mayur, Rao Annavarapu Chandra Sekhara, and Kulkarni Chaitanya. 2022. A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review (2022), 150.Google ScholarGoogle Scholar
  336. [336] Warriner Amy Beth, Kuperman Victor, and Brysbaert Marc. 2013. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods 45, 4 (2013), 11911207.Google ScholarGoogle ScholarCross RefCross Ref
  337. [337] Weinland Daniel, Ronfard Remi, and Boyer Edmond. 2006. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding 104, 2-3 (2006), 249257.Google ScholarGoogle ScholarDigital LibraryDigital Library
  338. [338] Wen Wanhui, Liu Guangyuan, Cheng Nanpu, Wei Jie, Shangguan Pengchao, and Huang Wenjin. 2014. Emotion recognition based on multi-variant correlation of physiological signals. IEEE Transactions on Affective Computing 5, 2 (2014), 126140.Google ScholarGoogle ScholarCross RefCross Ref
  339. [339] Wiegand Michael and Ruppenhofer Josef. 2015. Opinion holder and target extraction based on the induction of verbal categories. In Proceedings of the Nineteenth Conference on Computational Natural Language Learning. 215225.Google ScholarGoogle ScholarCross RefCross Ref
  340. [340] Wikarsa L. and Thahir S. N.. 2015. A Text Mining Application of Emotion Classifications of Twitter’s Users Using Naïve Bayes Method International Conference on Wireless & Telematics. In 1st International Conference on Wireless and Telematics (ICWT), IEEE, 1–6.Google ScholarGoogle Scholar
  341. [341] Wojatzki Michael, Ruppert Eugen, Holschneider Sarah, Zesch Torsten, and Biemann Chris. 2017. GermEval 2017: Shared task on aspect-based sentiment in social media customer feedback. Proceedings of the GermEval (2017), 112.Google ScholarGoogle Scholar
  342. [342] Wöllmer Martin, Weninger Felix, Knaup Tobias, Schuller Björn, Sun Congkai, Sagae Kenji, and Morency Louis-Philippe. 2013. YouTube movie reviews: Sentiment analysis in an audio-visual context. IEEE Intelligent Systems 28, 3 (2013), 4653.Google ScholarGoogle ScholarDigital LibraryDigital Library
  343. [343] Wu Chi-En and Tsai Richard Tzong-Han. 2014. Using relation selection to improve value propagation in a ConceptNet-based sentiment dictionary. Knowledge-Based Systems 69 (2014), 100107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  344. [344] Xie Haoran, Li Xiaodong, Wang Tao, Lau Raymond Y. K., Wong Tak-Lam, Chen Li, Wang Fu Lee, and Li Qing. 2016. Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy. Information Processing & Management 52, 1 (2016), 6172.Google ScholarGoogle ScholarDigital LibraryDigital Library
  345. [345] Xu Lei and Xu L.. 1992. A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics 22, 3 (1992), 418435.Google ScholarGoogle ScholarCross RefCross Ref
  346. [346] Yamasaki Toshihiko, Fukushima Yusuke, Furuta Ryosuke, Sun Litian, Aizawa Kiyoharu, and Bollegala Danushka. 2015. Prediction of user ratings of oral presentations using label relations. In Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia. 3338.Google ScholarGoogle ScholarDigital LibraryDigital Library
  347. [347] Yan Gongjun, He Wu, Shen Jiancheng, and Tang Chuanyi. 2014. A bilingual approach for conducting Chinese and English social media sentiment analysis. Computer Networks 75 (2014), 491503.Google ScholarGoogle ScholarDigital LibraryDigital Library
  348. [348] Yang Zhilin, Dai Zihang, Yang Yiming, Carbonell Jaime, Salakhutdinov Russ R., and Le Quoc V.. 2019. XLNet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems. 57535763.Google ScholarGoogle Scholar
  349. [349] Yang Zhilin, Qi Peng, Zhang Saizheng, Bengio Yoshua, Cohen William W., Salakhutdinov Ruslan, and Manning Christopher D.. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600 (2018).Google ScholarGoogle Scholar
  350. [350] Yu Hong and Hatzivassiloglou Vasileios. 2003. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. 129136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  351. [351] Zadeh Amir. 2015. Micro-opinion sentiment intensity analysis and summarization in online videos. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. 587591.Google ScholarGoogle ScholarDigital LibraryDigital Library
  352. [352] Zadeh Amir, Chen Minghai, Poria Soujanya, Cambria Erik, and Morency Louis-Philippe. 2017. Tensor fusion network for multimodal sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, 11031114. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  353. [353] Zadeh Amir, Liang Paul Pu, Mazumder Navonil, Poria Soujanya, Cambria Erik, and Morency Louis-Philippe. 2018. Memory fusion network for multi-view sequential learning. arXiv preprint arXiv:1802.00927 (2018).Google ScholarGoogle Scholar
  354. [354] Zadeh Amir, Liang Paul Pu, Poria Soujanya, Vij Prateek, Cambria Erik, and Morency Louis-Philippe. 2018. Multi-attention recurrent network for human communication comprehension. Proceedings of the AAAI Conference on Artificial Intelligence, 32 1 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  355. [355] Zadeh Amir, Zellers Rowan, Pincus Eli, and Morency Louis-Philippe. 2016. MOSI: Multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. arXiv preprint arXiv:1606.06259 (2016).Google ScholarGoogle Scholar
  356. [356] Zadeh Amir, Zellers Rowan, Pincus Eli, and Morency Louis-Philippe. 2016. Multimodal sentiment intensity analysis in videos: Facial gestures and verbal messages. IEEE Intelligent Systems 31, 6 (2016), 8288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  357. [357] Zadeh AmirAli Bagher, Liang Paul Pu, Poria Soujanya, Cambria Erik, and Morency Louis-Philippe. 2018. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 22362246.Google ScholarGoogle ScholarCross RefCross Ref
  358. [358] Zafeiriou Stefanos, Kollias Dimitrios, Nicolaou Mihalis A., Papaioannou Athanasios, Zhao Guoying, and Kotsia Irene. 2017. Aff-Wild: Valence and arousal ’in-the-wild’ challenge. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 3441.Google ScholarGoogle Scholar
  359. [359] Zeng Zhihong, Pantic Maja, Roisman Glenn I., and Huang Thomas S.. 2008. A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 1 (2008), 3958.Google ScholarGoogle ScholarDigital LibraryDigital Library
  360. [360] Zhang Jianhai, Chen Ming, Hu Sanqing, Cao Yu, and Kozma Robert. 2016. PNN for EEG-based emotion recognition. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 002319002323.Google ScholarGoogle ScholarDigital LibraryDigital Library
  361. [361] Zhang Min-Ling. 2010. A k-nearest neighbor based multi-instance multi-label learning algorithm. In 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, Vol. 2. IEEE, 207212.Google ScholarGoogle ScholarDigital LibraryDigital Library
  362. [362] Zhang Shunxiang, Wei Zhongliang, Wang Yin, and Liao Tao. 2018. Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary. Future Generation Computer Systems 81 (2018), 395403.Google ScholarGoogle ScholarDigital LibraryDigital Library
  363. [363] Zhang Yifan, Cao Congqi, Cheng Jian, and Lu Hanqing. 2018. EgoGesture: A new dataset and benchmark for egocentric hand gesture recognition. IEEE Transactions on Multimedia 20, 5 (2018), 10381050.Google ScholarGoogle ScholarCross RefCross Ref
  364. [364] Zhao Guoying and Pietikainen Matti. 2007. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 6 (2007), 915928.Google ScholarGoogle ScholarDigital LibraryDigital Library
  365. [365] Zhou Deyu, Zhang Xuan, Zhou Yin, Zhao Quan, and Geng Xin. 2016. Emotion distribution learning from texts. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 638647.Google ScholarGoogle ScholarCross RefCross Ref
  366. [366] Zhu Song Chun and Yuille Alan L.. 1996. FORMS: A flexible object recognition and modelling system. International Journal of Computer Vision 20, 3 (1996), 187212.Google ScholarGoogle ScholarCross RefCross Ref
  367. [367] Zong Cong and Chetouani Mohamed. 2009. Hilbert-Huang transform based physiological signals analysis for emotion recognition. In 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 334339.Google ScholarGoogle ScholarCross RefCross Ref
  368. [368] Zyma Igor, Tukaev Sergii, Seleznov Ivan, Kiyono Ken, Popov Anton, Chernykh Mariia, and Shpenkov Oleksii. 2019. Electroencephalograms during mental arithmetic task performance. Data 4, 1 (2019), 14.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Survey of Cutting-edge Multimodal Sentiment Analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 56, Issue 9
        October 2024
        980 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3613649
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 April 2024
        • Online AM: 11 March 2024
        • Accepted: 7 March 2024
        • Revised: 3 February 2024
        • Received: 21 April 2023
        Published in csur Volume 56, Issue 9

        Check for updates

        Qualifiers

        • survey
      • Article Metrics

        • Downloads (Last 12 months)577
        • Downloads (Last 6 weeks)351

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text