skip to main content
10.1145/3647444.3647918acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimmiConference Proceedingsconference-collections
research-article

Advancement In Melanoma Detection: A Comprehensive Review On Deep Learning Based Classification Approaches

Published:13 May 2024Publication History

ABSTRACT

The most deadly type of skin cancer, melanoma, poses a serious public health problem, and early detection is essential for enhancing patient outcomes. Deep learning-based classification techniques have recently demonstrated incredible promise in terms of revolutionising melanoma detection. The developments and innovations in this subject are thoroughly explored in this in-depth review. The study starts out by going over the epidemiology of melanoma and its rising prevalence, highlighting the significance of creating reliable and precise detection techniques. It draws attention to the shortcomings of conventional melanoma diagnosis methods and emphasises the potential for deep learning to fill in these gaps. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs), Xception, ResNet, among other deep learning models, are examined in detail. The advantages and disadvantages of each strategy are compared, illuminating their applicability for various stages and types of melanoma lesions. As techniques to improve model performance, transfer learning and ensemble approaches are investigated. This promotes robust classification even with small datasets.This paper also discusses the value of augmented data, addressing the dearth of annotated melanoma photos and their implications for deep learning model training. The critical importance of explainable artificial intelligence in fostering transparency and trust in these models is highlighted, with an emphasis on the results' clinical applicability and interpretability. The paper also acknowledges difficulties and constraints like interpretability, model generalisation, and ethical considerations. It is suggested that methods for dealing with these problems be used, including as incorporating dermatological knowledge and continuing research into enhancing model explainability.

References

  1. Alenezi, F.; Armghan, A.; Polat, K. Wavelet transform based deep residual neural network and ReLU based Extreme Learning Machine for skin lesion classification. Expert Syst. Appl. 2023, 213, 119064Google ScholarGoogle Scholar
  2. Shinde, R.K.; Alam, M.S.; Hossain, M.B.; MdImtiaz, S.; Kim, J.; Padwal, A.A.; Kim, N. Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning. Cancers 2022, 15, 12.Google ScholarGoogle Scholar
  3. Alenezi, F.; Armghan, A.; Polat, K. A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images. Expert Syst. Appl. 2023, 215, 119352. [Google ScholarGoogle Scholar
  4. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.Google ScholarGoogle Scholar
  5. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520.Google ScholarGoogle ScholarCross RefCross Ref
  6. Abbas, Q.; Gul, A. Detection and Classification of Malignant Melanoma Using Deep Features of NASNet. SN Comput. Sci. 2022, 4, 21.Google ScholarGoogle Scholar
  7. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8697–8710.Google ScholarGoogle ScholarCross RefCross Ref
  8. Gouda, W.; Sama, N.U.; Al-Waakid, G.; Humayun, M.; Jhanjhi, N.Z. Detection of skin cancer based on skin lesion images using deep learning. Healthcare 2022, 10, 1183.Google ScholarGoogle Scholar
  9. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018.Google ScholarGoogle Scholar
  10. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.Google ScholarGoogle ScholarCross RefCross Ref
  11. Alwakid, G.; Gouda, W.; Humayun, M.; Sama, N.U. Melanoma Detection Using Deep Learning-Based Classifications. Healthcare 2022, 10, 2481.Google ScholarGoogle Scholar
  12. Bassel, A.; Abdulkareem, A.B.; Alyasseri, Z.A.A.; Sani, N.S.; Mohammed, H.J. Automatic malignant and benign skin cancer classification using a hybrid deep learning approach. Diagnostics 2022, 12, 2472.Google ScholarGoogle Scholar
  13. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282.Google ScholarGoogle Scholar
  14. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558.Google ScholarGoogle Scholar
  15. Fix, E. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Randolph Field, TX, USA, 1985; Volume 1.Google ScholarGoogle Scholar
  16. Kousis, I.; Perikos, I.; Hatzilygeroudis, I.; Virvou, M. Deep Learning Methods for Accurate Skin Cancer Recognition and Mobile Application. Electronics 2022, 11, 1294.Google ScholarGoogle Scholar
  17. Shorfuzzaman, M. An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection. Multimed. Syst. 2022, 28, 1309–1323.Google ScholarGoogle Scholar
  18. Reis, H.C.; Turk, V.; Khoshelham, K.; Kaya, S. InSiNet: A deep convolutional approach to skin cancer detection and segmentation. Med. Biol. Eng. Comput. 2022, 60, 643–662.Google ScholarGoogle Scholar
  19. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.Google ScholarGoogle Scholar
  20. Wang, S.H.; Zhang, Y.D. DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–19.Google ScholarGoogle Scholar
  21. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part IV 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 630–645.Google ScholarGoogle Scholar
  22. Fraiwan, M.; Faouri, E. On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning. Sensors 2022, 22, 4963.Google ScholarGoogle Scholar
  23. Ghosh, P.; Azam, S.; Quadir, R.; Karim, A.; Shamrat, F.J.M.; Bhowmik, S.K.; Jonkman, M.; Hasib, K.M.; Ahmed, K. SkinNet-16: A deep learning approach to identify benign and malignant skin lesions. Front. Oncol. 2022, 12, 931141.Google ScholarGoogle Scholar
  24. Maniraj, S.; Maran, P.S. A hybrid deep learning approach for skin cancer diagnosis using subband fusion of 3D wavelets. J. Supercomput. 2022, 78, 12394–12409.Google ScholarGoogle Scholar
  25. Alam, M.J.; Mohammad, M.S.; Hossain, M.A.F.; Showmik, I.A.; Raihan, M.S.; Ahmed, S.; Mahmud, T.I. S2C-DeLeNet: A parameter transfer based segmentation-classification integration for detecting skin cancer lesions from dermoscopic images. Comput. Biol. Med. 2022, 150, 106148.Google ScholarGoogle Scholar
  26. Mazoure, B.; Mazoure, A.; Bédard, J.; Makarenkov, V. DUNEScan: A web server for uncertainty estimation in skin cancer detection with deep neural networks. Sci. Rep. 2022, 12, 179.Google ScholarGoogle Scholar
  27. Malibari, A.A.; Alzahrani, J.S.; Eltahir, M.M.; Malik, V.; Obayya, M.; Al Duhayyim, M.; Neto, A.V.L.; de Albuquerque, V.H.C. Optimal deep neural network-driven computer aided diagnosis model for skin cancer. Comput. Electr. Eng. 2022, 103, 108318.Google ScholarGoogle Scholar
  28. Rashid, J.; Ishfaq, M.; Ali, G.; Saeed, M.R.; Hussain, M.; Alkhalifah, T.; Alturise, F.; Samand, N. Skin cancer disease detection using transfer learning technique. Appl. Sci. 2022, 12, 5714.Google ScholarGoogle Scholar
  29. Aljohani, K.; Turki, T. Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks. Ai 2022, 3, 512–525.Google ScholarGoogle Scholar
  30. Bian, X.; Pan, H.; Zhang, K.; Li, P.; Li, J.; Chen, C. Skin lesion image classification method based on extension theory and deep learning. Multimed. Tools Appl. 2022, 81, 16389–16409.Google ScholarGoogle Scholar
  31. Demir, A.; Yilmaz, F.; Kose, O. Early detection of skin cancer using deep learning architectures: Resnet-101 and inception-v3. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019; pp. 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jain, S.; Singhania, U.; Tripathy, B.; Nasr, E.A.; Aboudaif, M.K.; Kamrani, A.K. Deep learning-based transfer learning for classification of skin cancer. Sensors 2021, 21, 8142.Google ScholarGoogle Scholar
  33. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.Google ScholarGoogle ScholarCross RefCross Ref
  34. Kausar, N.; Hameed, A.; Sattar, M.; Ashraf, R.; Imran, A.S.; Abidin, M.Z.U.; Ali, A. Multiclass skin cancer classification using ensemble of fine-tuned deep learning models. Appl. Sci. 2021, 11, 10593.Google ScholarGoogle Scholar
  35. Bechelli, S.; Delhommelle, J. Machine learning and deep learning algorithms for skin cancer classification from dermoscopic images. Bioengineering 2022, 9, 97.Google ScholarGoogle Scholar
  36. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics 2021, 11, 811.Google ScholarGoogle Scholar
  37. Singh, U. P., Saxena, V., Kumar, A., Bhari, P., & Saxena, D. (2022, December). Unraveling the Prediction of Fine Particulate Matter over Jaipur, India using Long Short-Term Memory Neural Network. In Proceedings of the 4th International Conference on Information Management & Machine Intelligence (pp. 1-5).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Kumar, A., Bhari, P. L., Singh, U. P., & Saxena, V. (2022, December). Comparative Study of different Machine Learning Algorithms to Analyze Sentiments with a Case Study of Two Person's Microblogs on Twitter. In Proceedings of the 4th International Conference on Information Management & Machine Intelligence (pp.1-6).Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Saxena, V., Saxena, D., & Singh, U. P. (2022, December). Security Enhancement using Image verification method to Secure Docker Containers. In Proceedings of the 4th International Conference on Information Management & Machine Intelligence (pp. 1-5).Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Chauhan, M., Malhotra, R., Pathak, M., & Singh, U. P. (2012). Different aspects of cloud security. International Journal of Engineering Research and Applications, 2, 864-869.Google ScholarGoogle Scholar
  41. Mittal, A. K., Singh, U. P., Tiwari, A., Dwivedi, S., Joshi, M. K., & Tripathi, K. C. (2015). Short-term predictions by statistical methods in regions of varying dynamical error growth in a chaotic system. Meteorology and Atmospheric Physics, 127, 457-465.Google ScholarGoogle ScholarCross RefCross Ref
  42. Singh, U. P., Mittal, A. K., Dwivedi, S., & Tiwari, A. (2015). Predictability study of forced Lorenz model: an artificial neural network approach. History, 40(181), 27-33.Google ScholarGoogle Scholar
  43. Singh, U. P., Mittal, A. K., Dwivedi, S., & Tiwari, A. (2020). Evaluating the predictability of central Indian rainfall on short and long timescales using theory of nonlinear dynamics. Journal of water and Climate Change, 11(4), 1134-1149.Google ScholarGoogle ScholarCross RefCross Ref
  44. Singh, U., Pathak, M., Malhotra, R., & Chauhan, M. (2012). Secure communication protocol for ATM using TLS handshake. Journal of Engineering Research and Applications (IJERA), 2(2), 838-948.Google ScholarGoogle Scholar
  45. Singh, U. P., & Mittal, A. K. (2021). Testing reliability of the spatial Hurst exponent method for detecting a change point. Journal of Water and Climate Change, 12(8), 3661-3674.Google ScholarGoogle ScholarCross RefCross Ref
  46. Tiwari, A., Mittal, A. K., Dwivedi, S., & Singh, U. P. (2015). Nonlinear time series analysis of rainfall over central Indian region using CMIP5 based climate model. Climate Change, 1(4), 411-417.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICIMMI '23: Proceedings of the 5th International Conference on Information Management & Machine Intelligence
    November 2023
    1215 pages

    Copyright © 2023 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 13 May 2024

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format