skip to main content
research-article
Open Access

Deep Dive into NTP Pool's Popularity and Mapping

Published:21 February 2024Publication History
Skip Abstract Section

Abstract

Time synchronization is of paramount importance on the Internet, with the Network Time Protocol (NTP) serving as the primary synchronization protocol. The NTP Pool, a volunteer-driven initiative launched two decades ago, facilitates connections between clients and NTP servers. Our analysis of root DNS queries reveals that the NTP Pool has consistently been the most popular time service. We further investigate the DNS component (GeoDNS) of the NTP Pool, which is responsible for mapping clients to servers. Our findings indicate that the current algorithm is heavily skewed, leading to the emergence of time monopolies for entire countries. For instance, clients in the US are served by 551 NTP servers, while clients in Cameroon and Nigeria are served by only one and two servers, respectively, out of the 4k+ servers available in the NTP Pool. We examine the underlying assumption behind GeoDNS for these mappings and discover that time servers located far away can still provide accurate clock time information to clients. We have shared our findings with the NTP Pool operators, who acknowledge them and plan to revise their algorithm to enhance security.

References

  1. Apple. 2021. Apple NTPService. time.apple.com.Google ScholarGoogle Scholar
  2. Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. 2005. DNS Security Introduction and Requirements. RFC 4033. IETF. http://tools.ietf.org/rfc/rfc4033.txtGoogle ScholarGoogle Scholar
  3. Jari Arkko. 2019. Centralised Architectures in Internet Infrastructure. Internet Draft. https://tools.ietf.org/html/draftarkko- arch-infrastructure-centralisation-00Google ScholarGoogle Scholar
  4. Jari Arkko. 2020. The influence of Internet architecture on centralised versus distributed Internet services. Journal of Cyber Policy 5, 1 (2020), 30--45. https://doi.org/10.1080/23738871.2020.1740753Google ScholarGoogle ScholarCross RefCross Ref
  5. Arkko, Jari and Tramme, B. and Nottingham,Mand Huitema, C and Thomson, M. and Tantsura, J. and ten Oever, N. 2019. Considerations on Internet Consolidation and the Internet Architecture. Internet Draft. https://tools.ietf.org/html/draftarkko- iab-internet-consolidation-02Google ScholarGoogle Scholar
  6. Ask Bjørn Hansen. 2021. GeoDNS servers. https://github.com/abh/geodns/.Google ScholarGoogle Scholar
  7. Ask Bjørn Hansen. 2023. Minor New Features on the website. https://community.ntppool.org/t/minor-new-featureson- the-website/2947/8.Google ScholarGoogle Scholar
  8. Rushvanth Bhaskar. 2022. A Day in the Life of NTP: Analysis of NTPPool Traffic. Master's thesis. University of Twente and SIDN Labs, Enschede and Arnhem, The Netherlands. Master's thesis.Google ScholarGoogle Scholar
  9. Stephan Bortzmeyer, Ralph Dolmans, and Paul Hoffman. 2021. DNS Query Name Minimisation to Improve Privacy. RFC 9156. IETF. http://tools.ietf.org/rfc/rfc9156.txtGoogle ScholarGoogle Scholar
  10. Physikalisch Technische Bundesanstalt. 2022. FDCF77 - PTB.de. (Nov. 5 2022). https://www.ptb.de/cms/en/ptb/ fachabteilungen/abt4/fb-44/ag-442/dissemination-of-legal-time/dcf77.htmlGoogle ScholarGoogle Scholar
  11. Randy Bush and Rob Austein. 2013. The Resource Public Key Infrastructure (RPKI) to Router Protocol. RFC 6810. IETF. http://tools.ietf.org/rfc/rfc6810.txtGoogle ScholarGoogle Scholar
  12. CAIDA. 2022. Index of /datasets/routing/routeviews-prefix2as. https://publicdata.caida.org/datasets/routing/ routeviews-prefix2as.Google ScholarGoogle Scholar
  13. Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. 2008. A Day at the Root of the Internet. ACM Computer Communication Review 38, 5 (April 2008), 41--46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cloudflare. 2021. Cloudflare Time Service. https://www.cloudflare.com/time/.Google ScholarGoogle Scholar
  15. C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. 2016. Client Subnet in DNS Queries. RFC 7871. IETF. http://tools.ietf.org/rfc/rfc7871.txtGoogle ScholarGoogle Scholar
  16. Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael Bailey, and Manish Karir. 2014. Taming the 800 Pound Gorilla: The Rise and Decline of NTP DDoS Attacks. In Proceedings of the 2014 ACM Conference on Internet Measurement Conference (Vancouver, BC, Canada) (IMC). ACM, 435--448. https://doi.org/10.1145/2663716.2663717Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Wouter B de Vries, Quirin Scheitle, Moritz Müller, Willem Toorop, Ralph Dolmans, and Roland van Rijswijk-Deij. 2019. A First Look at QNAME Minimization in the Domain Name System. In International Conference on Passive and ActiveGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  18. Omer Deutsch, Neta Rozen Schiff, Danny Dolev, and Michael Schapira. 2018. Preventing (Network) Time Travel with Chronos.. In NDSS.Google ScholarGoogle Scholar
  19. Tim Dierks and Eric Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. IETF. http: //tools.ietf.org/rfc/rfc5246.txtGoogle ScholarGoogle Scholar
  20. DNS OARC. 2022. DITL Traces and Analysis. https://www.dns-oarc.net/index.php/oarc/data/ditl/.Google ScholarGoogle Scholar
  21. Ralph Droms. 1997. Dynamic Host Configuration Protocol. RFC 2131. IETF. http://tools.ietf.org/rfc/rfc2131.txtGoogle ScholarGoogle Scholar
  22. Toby Ehrenkranz and Jun Li. 2009. On the state of IP spoofing defense. ACM Transactions on Internet Technology (TOIT) 9, 2 (2009), 1--29.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Daniel Franke, Dieter Sibold, Kristof Teichel, Marcus Dansarie, and Ragnar Sundblad. 2020. Network Time Security for the Network Time Protocol. RFC 8915. IETF. http://tools.ietf.org/rfc/rfc8915.txtGoogle ScholarGoogle Scholar
  24. Richard Gayraud and Benoit Lourdelet. 2010. Network Time Protocol (NTP) Server Option for DHCPv6. RFC 5908. IETF. http://tools.ietf.org/rfc/rfc5908.txtGoogle ScholarGoogle Scholar
  25. Google. 2021. Google Public NTP. https://developers.google.com/time.Google ScholarGoogle Scholar
  26. Mohammad Javad Hajikhani, Thomas Kunz, and Howard Schwartz. 2016. A Recursive Method for Clock Synchronization in Asymmetric Packet-Based Networks. IEEE/ACM Transactions on Networking 24, 4 (2016), 2332--2342. https://doi.org/10.1109/TNET.2015.2462772Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Stewart Hampton. 2018. Five Dangers of Poor Network Timekeeping + Easy and Cost Effective Solutions (Part 2 of 10). (Sept. 5 2018). https://www.microsemi.com/blog/2018/09/05/five-dangers-of-poor-network-timekeeping-easy-andcost- effective-solutions-to-avoid-networks-fall-out-of-sync-part-2-of-10/Google ScholarGoogle Scholar
  28. Alden Hilton, Casey Deccio, and Jacob Davis. 2023. Fourteen Years in the Life: A Root Server's Perspective on DNS Resolver Security. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3171--3186. https://www.usenix.org/conference/usenixsecurity23/presentation/hiltonGoogle ScholarGoogle Scholar
  29. Philip Homburg. 2015. NTP Measurements with RIPE Atlas. https://labs.ripe.net/author/philip_homburg/ntpmeasurements- with-ripe-atlas/.Google ScholarGoogle Scholar
  30. Nate Hopper. 2022. The Thorny Problem of Keeping the Internet's Time. The New Yorker (Sept. 30 2022). https: //www.newyorker.com/tech/annals-of-technology/the-thorny-problem-of-keeping-the-internets-timeGoogle ScholarGoogle Scholar
  31. IEEE. 2002. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Std. 1588--2002 (2002). https://standards.ieee.org/ieee/1588/3140/Google ScholarGoogle Scholar
  32. IEEE. 2020. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Std 1588--2019 (Revision ofIEEE Std 1588--2008) (2020), 1--499. https://doi.org/10.1109/IEEESTD.2020.9120376Google ScholarGoogle ScholarCross RefCross Ref
  33. ITU. 2023. Statistics. https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspxGoogle ScholarGoogle Scholar
  34. Philipp Jeitner, Haya Shulman, and Michael Waidner. 2020. The Impact of DNS Insecurity on Time. In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 266--277. https://doi.org/10. 1109/DSN48063.2020.00043Google ScholarGoogle Scholar
  35. Cecilia Kang and David McCabe. 2020. Lawmakers, United in Their Ire, Lash Out at Big Tech's Leaders. New York Times (July. 29 2020). https://www.nytimes.com/2020/07/29/technology/big-tech-hearing-apple-amazon-facebookgoogle. htmlGoogle ScholarGoogle Scholar
  36. Aqsa Kashaf, Vyas Sekar, and Yuvraj Agarwal. 2020. Analyzing Third Party Service Dependencies in Modern Web Services: Have We Learned from the Mirai-Dyn Incident?. In Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA) (IMC '20). Association for Computing Machinery, New York, NY, USA, 634--647.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Robert Kisteleki. 2023. NTP empty results ('result': ['x': '*']). https://www.ripe.net/ripe/mail/archives/ripe-atlas/2023- October/005607.html.Google ScholarGoogle Scholar
  38. Warren Kumari and Paul Hoffman. 2020. Running a Root Server Local to a Resolver. RFC 8806. IETF. http://tools.ietf. org/rfc/rfc8806.txtGoogle ScholarGoogle Scholar
  39. Jonghoon Kwon, Jeonggyu Song, Junbeom Hur, and Adrian Perrig. 2023. Did the Shark Eat the Watchdog in the NTP Pool? Deceiving the NTP Pool's Monitoring System. In 30th USENIX Security Symposium. https://www.usenix.org/ conference/usenixsecurity23/presentation/kwonGoogle ScholarGoogle Scholar
  40. Leslie Lamport. 2019. Time, Clocks, and the Ordering of Events in a Distributed System. Association for Computing Machinery, New York, NY, USA, 179--196. https://doi.org/10.1145/3335772.3335934Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ziqian Liu, Bradley Huffaker, Marina Fomenkov, Nevil Brownlee, and Kimberly Claffy. 2007. Two Days in the Life of the DNS Anycast Root Servers. In Proceedings of the International conference on Passive and Active Measurements (PAM). 125--134.Google ScholarGoogle ScholarCross RefCross Ref
  42. Jonathan Magnusson, Moritz Müller, Anna Brunstrom, and Tobias Pulls. 2023. A Second Look at DNS QNAME Minimization. In Passive and Active Measurement: 24th International Conference, PAM 2023, Virtual Event, March 21--23, 2023, Proceedings. Springer, 496--521.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg. 2016. Attacking the Network Time Protocol. In Proceedings of the 23rd Network and Distributed System Security Symposium (NDSS 2016) (San Diego, California).Google ScholarGoogle ScholarCross RefCross Ref
  44. Aanchal Malhotra and Sharon Goldberg. 2016. Attacking NTP's Authenticated Broadcast Mode. SIGCOMM Comput. Commun. Rev. 46, 2 (may 2016), 12--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Aanchal Malhotra, Matthew Van Gundy, Mayank Varia, Haydn Kennedy, Jonathan Gardner, and Sharon Goldberg. 2017. The Security of NTP's Datagram Protocol. In Financial Cryptography and Data Security: 21st International Conference, FC 2017, Sliema, Malta, April 3--7, 2017, Revised Selected Papers 21. Springer, 405--423.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Mark Morowczynski. 2012. Did YourActive Directory Domain Time Just Jump To The Year 2000? https://techcommunity. microsoft.com/t5/core-infrastructure-and-security/did-your-active-directory-domain-time-just-jump-to-the-year- 2000/ba-p/255873.Google ScholarGoogle Scholar
  47. Maxmind. 2021. Maxmind. http://www.maxmind.com/Google ScholarGoogle Scholar
  48. Microsoft. 2021. Microsoft NTP Service. http://time.windows.com.Google ScholarGoogle Scholar
  49. David Mills. 2006. Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI. RFC 4330. IETF. http: //tools.ietf.org/rfc/rfc4330.txtGoogle ScholarGoogle Scholar
  50. David Mills, Jim Martin, Jack Burbank, and William Kasch. 2010. Network Time Protocol Version 4: Protocol and Algorithms Specification. RFC 5905. IETF. http://tools.ietf.org/rfc/rfc5905.txtGoogle ScholarGoogle Scholar
  51. Paul Mockapetris. 1987. Domain names - concepts and facilities. RFC 1034. IETF. http://tools.ietf.org/rfc/rfc1034.txtGoogle ScholarGoogle Scholar
  52. Giovane C. M. Moura, Sebastian Castro, Wes Hardaker, Maarten Wullink, and Cristian Hesselman. 2020. Clouding up the Internet: How Centralized is DNS Traffic Becoming?. In Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA) (IMC '20). Association for Computing Machinery, New York, NY, USA, 42--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Giovane C. M. Moura, Ricardo deO. Schmidt, John Heidemann,Wouter B. de Vries, Moritz Müller, LanWei, and Christian Hesselman. 2016. Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event. In Proceedings of the ACM Internet Measurement Conference. ACM, Santa Monica, California, USA, 255--270. https://doi.org/10.1145/2987443.2987446Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker. 2019. Cache Me If You Can: Effects of DNS Time-to-Live. In Proceedings of the ACM Internet Measurement Conference. ACM, Amsterdam, the Netherlands, 101--115. https://doi.org/10.1145/3355369.3355568Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt, and Marco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses During DDoS. In Proceedings of the ACM Internet Measurement Conference. ACM, Boston, MA, USA, 8--21. https://doi.org/10.1145/3278532.3278534Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John Heidemann. 2017. Recursives in the Wild: Engineering Authoritative DNS Servers. In Proceedings of the ACM Internet Measurement Conference. ACM, London, UK, 489--495. https://doi.org/10.1145/3131365.3131366Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Network Time Foundation. 2022. Download NTP . https://doc.ntp.org/downloads/.Google ScholarGoogle Scholar
  58. Clifford Neuman, Tom Yu, Sam Hartman, and Kenneth Raeburn. 2005. The Kerberos Network Authentication Service (V5). RFC 4120. IETF. http://tools.ietf.org/rfc/rfc4120.txtGoogle ScholarGoogle Scholar
  59. NIST. 2022. NIST Internet Time Service (ITS). (Nov. 5 2022). https://www.nist.gov/pml/time-and-frequencydivision/ time-distribution/internet-time-service-itsGoogle ScholarGoogle Scholar
  60. M. Nottingham. 2023. Centralization, Decentralization, and Internet Standards. RFC 9518. IETF. http://tools.ietf.org/rfc/ rfc9518.txtGoogle ScholarGoogle Scholar
  61. NTP Pool. 2021. All Pool Servers. https://www.ntppool.org/zone.Google ScholarGoogle Scholar
  62. NTP Pool. 2021. Argentina - ar.pool.ntp.org. https://www.ntppool.org/zone/ar.Google ScholarGoogle Scholar
  63. NTP Pool. 2021. pool.ntp.org: statistics for 51.255.142.175 . https://www.ntppool.org/scores/51.255.142.175/.Google ScholarGoogle Scholar
  64. NTP Pool. 2021. pool.ntp.org: Statistics for 95.217.188.206. https://www.ntppool.org/scores/95.217.188.206.Google ScholarGoogle Scholar
  65. NTP Pool. 2021. pool.ntp.org: the internet cluster of ntp servers. https://www.ntppool.org/en/.Google ScholarGoogle Scholar
  66. NTP Pool. 2021. The NTP Pool for vendors. https://www.ntppool.org/en/vendors.html.Google ScholarGoogle Scholar
  67. NTP Pool. 2022. How do I join pool.ntp.org? https://www.ntppool.org/en/join.html.Google ScholarGoogle Scholar
  68. NTP Pool. 2023. Monitoring System - Technical details. https://news.ntppool.org/docs/monitoring/.Google ScholarGoogle Scholar
  69. NTP Pool. 2023. NTP Pool Monitoring v2. https://news.ntppool.org/2023/03/ntp-pool-monitoring-v2/.Google ScholarGoogle Scholar
  70. Oleg Obleukhov. 2020. Building a more accurate time service at Facebook scale. https://engineering.fb.com/2020/03/ 18/production-engineering/ntp-service/.Google ScholarGoogle Scholar
  71. United States Naval Observatory. 2022. Information about NTP, the time backbone of the Internet. (Nov. 5 2022). https://www.cnmoc.usff.navy.mil/Our-Commands/United-States-Naval-Observatory/Precise-Time-Department/ Network-Time-Protocol-NTP/Google ScholarGoogle Scholar
  72. Yarin Perry, Neta Rozen-Schiff, and Michael Schapira. 2021. A Devil of a Time: How Vulnerable is NTP to Malicious Timeservers?. In Proceedings of the 28th Network and Distributed System Security Symposium (NDSS 2021) (Virtual Conference).Google ScholarGoogle ScholarCross RefCross Ref
  73. RIPE NCC. 2021. RIPE Atlas Measurement IDS. https://atlas.ripe.net/measurements/ID. , where ID is the experiment ID: EnumV4: 32025718, EnumV6: 32058440, ArgV4: 31789516, ArgV4-Emul:31830680, ArgV4-Android: 31992051, DE-Android:31970486, ArgV6:32001506.Google ScholarGoogle Scholar
  74. RIPE NCC. 2023. RIPE Atlas Measurement IDS. https://atlas.ripe.net/measurements/ID. , where ID is the experiment ID: Cloudflare: 47865355, Africa: 47867480, Asia:47867358, Europe: 47867632, North America:47867336, South America:47867316:.Google ScholarGoogle Scholar
  75. RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network. Internet Protocol Journal (IPJ) 18, 3 (Sep 2015), 2--26.Google ScholarGoogle Scholar
  76. RIPE Network Coordination Centre. 2020. RIPE Atlas. https://atlas.ripe.net.Google ScholarGoogle Scholar
  77. Root Server Operators. 2021. Root DNS. http://root-servers.org/.Google ScholarGoogle Scholar
  78. Teemu Rytilahti, Dennis Tatang, Janosch Köpper, and Thorsten Holz. 2018. Masters of Time: An Overview of the NTP Ecosystem. In 2018 IEEE European Symposium on Security and Privacy (EuroS P). 122--136. https://doi.org/10.1109/ EuroSP.2018.00017Google ScholarGoogle Scholar
  79. Bruce Schneier. 2018. Censorship in the Age of Large Cloud Providers. https://www.schneier.com/essays/archives/ 2018/06/censorship_in_the_ag.htmlGoogle ScholarGoogle Scholar
  80. Jeff A. Sherman and Judah Levine. 2016. Usage Analysis of the NIST Internet Time Service. Journal of Research of the National Institute of Standards and Technology 121 (March 2016), 33. https://doi.org/10.6028/jres.121.003Google ScholarGoogle ScholarCross RefCross Ref
  81. SIDN Labs. 2024. TimeNL. https://time.nl/index_en.html.Google ScholarGoogle Scholar
  82. Internet Society. 2019. Consolidation in the Internet Economy. https://future.internetsociety.org/2019/Google ScholarGoogle Scholar
  83. Stéphane Bortzmeyer. 2015. DNS Censorship (DNS Lies) As Seen By RIPE Atlas. https://labs.ripe.net/author/stephane_ bortzmeyer/dns-censorship-dns-lies-as-seen-by-ripe-atlas/.Google ScholarGoogle Scholar
  84. Ubuntu. 2023. Ubuntu NTP Service. https://ubuntu.com/server/docs/network-ntp.Google ScholarGoogle Scholar
  85. Kevin Vermeulen, Ege Gurmericliler, Italo Cunha, David Choffnes, and Ethan Katz-Bassett. 2022. Internet Scale Reverse Traceroute. In Proceedings of the 22nd ACM Internet Measurement Conference (Nice, France) (IMC '22). Association for Computing Machinery, New York, NY, USA, 694--715. https://doi.org/10.1145/3517745.3561422Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Adrian von Bidder. 2003. ntp DNS round robin experiment. https://groups.google.com/g/comp.protocols.time.ntp/c/ cShrN7imCJ0.Google ScholarGoogle Scholar

Index Terms

  1. Deep Dive into NTP Pool's Popularity and Mapping

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Proceedings of the ACM on Measurement and Analysis of Computing Systems
              Proceedings of the ACM on Measurement and Analysis of Computing Systems  Volume 8, Issue 1
              POMACS
              March 2024
              494 pages
              EISSN:2476-1249
              DOI:10.1145/3649331
              Issue’s Table of Contents

              Copyright © 2024 Owner/Author

              This work is licensed under a Creative Commons Attribution International 4.0 License.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 21 February 2024
              Published in pomacs Volume 8, Issue 1

              Check for updates

              Qualifiers

              • research-article
            • Article Metrics

              • Downloads (Last 12 months)222
              • Downloads (Last 6 weeks)101

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader