skip to main content
10.1145/3638380.3638412acmotherconferencesArticle/Chapter ViewAbstractPublication PagesozchiConference Proceedingsconference-collections
short-paper
Open Access

A Systematic Literature Review on the Use of Social Robots in Elderly Care

Published:10 May 2024Publication History

ABSTRACT

In view of demographic change and the shortage of skilled nursing staff, the use of social robots in nursing care, especially in elderly care, has become increasingly important in recent years. To address this development, we conducted a systematic literature review examining the acceptance of social robots in elderly care and people’s attitudes towards this technology. The aim of this work is to provide an overview of scientific publications from recent years in which social robots for the elderly have been evaluated in studies with human participants, in order to obtain a comprehensive picture of the acceptance potential for robotic care systems. In particular, the results of our study relate to the identification of potential uses of social robots in the care context, including interactions that improve activity and mood, provide care and companionship, support social interaction and communication, and reduce the load on caregivers. A variety of applications of robots in caregiving are explored, such as connecting older people with their families, providing companionship, promoting health, or providing therapeutic support. The results show a diverse, yet untapped potential of socially supportive robotic systems in care, with adoption highly dependent on several key factors.

References

  1. Markus Bajones, David Fischinger, Astrid Weiss, Paloma De La Puente, Daniel Wolf, Markus Vincze, Tobias Körtner, Markus Weninger, Konstantinos Papoutsakis, Damien Michel, Ammar Qammaz, Paschalis Panteleris, Michalis Foukarakis, Ilia Adami, Danae Ioannidi, Asterios Leonidis, Margherita Antona, Antonis Argyros, Peter Mayer, Paul Panek, Håkan Eftring, and Susanne Frennert. 2020. Results of Field Trials with a Mobile Service Robot for Older Adults in 16 Private Households. ACM Transactions on Human-Robot Interaction 9, 2 (2020), 1–27. https://doi.org/10.1145/3368554Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Marian R. Banks, Lisa M. Willoughby, and William A. Banks. 2008. Animal-assisted therapy and loneliness in nursing homes: use of robotic versus living dogs. Journal of the American Medical Directors Association 9, 3 (2008), 173–177. https://doi.org/10.1016/j.jamda.2007.11.007Google ScholarGoogle ScholarCross RefCross Ref
  3. Oliver Bendel. 2018. Pflegeroboter. Springer Fachmedien Wiesbaden, Wiesbaden. https://doi.org/10.1007/978-3-658-22698-5Google ScholarGoogle ScholarCross RefCross Ref
  4. Hannah Bradwell, Katie J. Edwards, Rhona Winnington, Serge Thill, Victoria Allgar, and Ray B. Jones. 2022. Implementing Affordable Socially Assistive Pet Robots in Care Homes Before and During the COVID-19 Pandemic: Stratified Cluster Randomized Controlled Trial and Mixed Methods Study. JMIR aging 5, 3 (2022). https://doi.org/10.2196/38864Google ScholarGoogle ScholarCross RefCross Ref
  5. Hannah Louise Bradwell, Katie Edwards, Deborah Shenton, Rhona Winnington, Serge Thill, and Ray B. Jones. 2021. User-Centered Design of Companion Robot Pets Involving Care Home Resident-Robot Interactions and Focus Groups With Residents, Staff, and Family: Qualitative Study. JMIR rehabilitation and assistive technologies 8, 4 (2021), e30337. https://doi.org/10.2196/30337Google ScholarGoogle ScholarCross RefCross Ref
  6. Cynthia Breazeal and Brian Scassellati. 1999. A Context-Dependent Attention System for a Social Robot. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence(IJCAI ’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1146–1153.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Amedeo Cesta, Silvia Coradeschi, Gabriella Cortellessa, Javier González-Jiménez, Lorenza Tiberio, and Stephen Von Rump. 2010. Enabling Social Interaction Through Embodiment in ExCITE. ForItAAL: Second Italian Forum on Ambient Assisted Living (01 2010).Google ScholarGoogle Scholar
  8. Kerstin Dautenhahn. 2002. Design spaces and niche spaces of believable social robots. In Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication. 192–197. https://doi.org/10.1109/ROMAN.2002.1045621Google ScholarGoogle ScholarCross RefCross Ref
  9. Birthe Dinesen, Helle Kidde Hansen, Gry Bruun Grønborg, Anne-Kirstine Dyrvig, Sofie Dalskov Leisted, Henrik Stenstrup, Cathrine Skov Schacksen, and Claus Oestergaard. 2022. Use of a Social Robot (LOVOT) for Persons With Dementia: Exploratory Study. JMIR rehabilitation and assistive technologies 9, 3 (2022). https://doi.org/10.2196/36505Google ScholarGoogle ScholarCross RefCross Ref
  10. Double. 2023. Double 3 The future of work is hybrid. https://www.ipa.fraunhofer.de/de/referenzprojekte/serodi.htmlGoogle ScholarGoogle Scholar
  11. Brian R. Duffy, Rooney Colm, Greg M. P. O’Hare, and O’Donoghue Ruadhan. 1999. What is a social robot?. In Pre-proceedings of the Tenth Irish Conference on Artificial Intelligence & Cognitive Science AICS’99, Derek G. Bridge (Ed.). Dept. of Computer Science, University College Cork, Cork.Google ScholarGoogle Scholar
  12. Friederike Eyssel and Dieta Kuchenbrandt. 2012. Social categorization of social robots: anthropomorphism as a function of robot group membership. The British journal of social psychology 51, 4 (2012), 724–731. https://doi.org/10.1111/j.2044-8309.2011.02082.x.Google ScholarGoogle ScholarCross RefCross Ref
  13. David Feil-Seifer and Maja J. Mataric. 2005. Defining socially assistive robotics. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.465–468. https://doi.org/10.1109/ICORR.2005.1501143Google ScholarGoogle ScholarCross RefCross Ref
  14. David Feil-Seifer, Kristine Skinner, and Maja J. Matarić. 2007. Psychological Benchmarks of Human-Robot Interaction. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 8, 3 (2007), 423–439. https://doi.org/10.1075/is.8.3.07feiGoogle ScholarGoogle ScholarCross RefCross Ref
  15. Fraunhofer. 2023. SRS Häusliche Unterstützung mittels teilautonomer Serviceroboter. https://www.aal.fraunhofer.de/de/projekte/srs.htmlGoogle ScholarGoogle Scholar
  16. Bundesministerium für Bildung und Forschung. 2023. Förderung des Wissenstransfers für eine aktive Mitgestaltung des Pflegesektors durch Mikrosystemtechnik (WiMi-Care). https://www.uni-due.de/wimi-care/Google ScholarGoogle Scholar
  17. Norina Gasteiger, Ho Seok Ahn, Christine Fok, Jongyoon Lim, Christopher Lee, Bruce A. MacDonald, Geon Ha Kim, and Elizabeth Broadbent. 2022. Older adults’ experiences and perceptions of living with Bomy, an assistive dailycare robot: a qualitative study. Assistive technology : the official journal of RESNA 34, 4 (2022), 487–497. https://doi.org/10.1080/10400435.2021.1877210Google ScholarGoogle ScholarCross RefCross Ref
  18. Norina Gasteiger, Ho Seok Ahn, Christopher Lee, Jongyoon Lim, Bruce A. MacDonald, Geon Ha Kim, and Elizabeth Broadbent. 2022. Participatory Design, Development, and Testing of Assistive Health Robots with Older Adults: An International Four-year Project. ACM Transactions on Human-Robot Interaction 11, 4 (2022), 1–19. https://doi.org/10.1145/3533726Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fraunhofer IPA. 2023. SeRoDi - Servicerobotik zur Unterstützung bei personenbezogenen Dienstleistungen.https://www.ipa.fraunhofer.de/de/referenzprojekte/serodi.htmlGoogle ScholarGoogle Scholar
  20. Gina M. Jay and Sherry L. Willis. 1992. Influence of direct computer experience on older adults’ attitudes toward computers. Journal of gerontology 47, 4 (1992), 250–257. https://doi.org/10.1093/geronj/47.4.p250Google ScholarGoogle ScholarCross RefCross Ref
  21. Chen Ke, Vivian Wei-Qun Lou, Kelvin Cheng-Kian Tan, Man Yi Wai, and Lai Lok Chan. 2020. Changes in technology acceptance among older people with dementia: the role of social robot engagement. International journal of medical informatics 141 (2020), 104241. https://doi.org/10.1016/j.ijmedinf.2020.104241Google ScholarGoogle ScholarCross RefCross Ref
  22. Chen Ke, Vivian Wei qun Lou, Kelvin Cheng kian Tan, Man Yi Wai, and Lai Lok Chan. 2019. Identifying Features that Enhance Older Adults’ Acceptance of Robots: A Mixed Methods Study. Gerontology 65, 4 (2019), 441–450. https://doi.org/10.1159/000494881Google ScholarGoogle ScholarCross RefCross Ref
  23. John F. Kihlstrom and Nancy Cantor. 2000. Social Intelligence. In Handbook of Intelligence, Robert J. Sternberg (Ed.). Cambridge University Press, 359–379. https://doi.org/10.1017/CBO9780511807947.017Google ScholarGoogle ScholarCross RefCross Ref
  24. Barbara Klein, Birgit Graf, and Inga Franziska Schlömer. 2017. Robotik in der Gesundheitswirtschaft: Einsatzfelder und Potenziale (1. aufl. ed.). Medhochzwei, s.l.https://online-bibliothek.medhochzwei-verlag.de?start=%2f%2f*%5b%40target%3d%27medhochzwei_ROBO%27%5dGoogle ScholarGoogle Scholar
  25. Annica Kristoffersson, Silvia Coradeschi, and Amy Loutfi. 2013. A Review of Mobile Robotic Telepresence. Advances in Human-Computer Interaction 2013 (2013), 1–17. https://doi.org/10.1155/2013/902316Google ScholarGoogle ScholarCross RefCross Ref
  26. Paola Lavin, Myriam Lesage, Edward Monroe, Michael Kanevsky, Johanna Gruber, Karin Cinalioglu, Soham Rej, and Harmehr Sekhon. 2022. Humanoid robot intervention vs. treatment as usual for loneliness in long-term care homes: Study protocol for a pilot randomized controlled trial. Frontiers in psychiatry 13 (2022), 1003881. https://doi.org/10.3389/fpsyt.2022.1003881Google ScholarGoogle ScholarCross RefCross Ref
  27. A. V. Libin and E. V. Libin. 2004. Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proc. IEEE 92, 11 (2004), 1789–1803. https://doi.org/10.1109/JPROC.2004.835366Google ScholarGoogle ScholarCross RefCross Ref
  28. Corinna E. Löckenhoff and Laura L. Carstensen. 2004. Socioemotional selectivity theory, aging, and health: the increasingly delicate balance between regulating emotions and making tough choices. Journal of personality 72, 6 (2004), 1395–1424. https://doi.org/10.1111/j.1467-6494.2004.00301.xGoogle ScholarGoogle ScholarCross RefCross Ref
  29. Matteo Luperto, Marta Romeo, Javier Monroy, Alessandro Vuono, Nicola Basilico, Javier Gonzalez-Jimenez, and N. Alberto Borghese. 2021. What is my Robot Doing? Remote Supervision to Support Robots for Older Adults Independent Living: a Field Study. In 2021 European Conference on Mobile Robots (ECMR). IEEE, 1–7. https://doi.org/10.1109/ECMR50962.2021.9568839Google ScholarGoogle ScholarCross RefCross Ref
  30. Gregor Mehlmann, Markus Häring, Kathrin Janowski, Tobias Baur, Patrick Gebhard, and Elisabeth André. 2014. Exploring a Model of Gaze for Grounding in Multimodal HRI. In Proceedings of the 16th International Conference on Multimodal Interaction, Albert Ali Salah, Jeffrey Cohn, Björn Schuller, Oya Aran, Louis-Philippe Morency, and Philip R. Cohen (Eds.). ACM, New York, NY, USA, 247–254. https://doi.org/10.1145/2663204.2663275Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sibylle Meyer (Ed.). 2011. Mein Freund der Roboter: Servicerobotik für ältere Menschen - eine Antwort auf den demographischen Wandel? ; Studie im Auftrag von VDE - Verband der Elektrotechnik, Elektronik, Informationstechnik, VDI - Verein Deutscher Ingenieure e.V., BMBF/VDE Innovationspartnerschaft AAL, DKE - Deutsche Kommission Elektrotechnik, Elektronik, Informationstechnik im DIN und VDE. /AAL-Schriftenreihe, Vol. 4. VDE-Verlag, Berlin.Google ScholarGoogle Scholar
  32. Johannes Mock, Julian Stubbe, and Steffen Wischmann. 2019. Akzeptanz von Servicerobotern: Tools und Strategien für den erfolgreichen betrieblichen EInsatz: Kurzstudie im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWi) im Rahmen der Begleitforschung zum Technologieprogramm PAiCE (Platforms | Additive Manufacturing | Imaging | Communication | Engineering). https://www.digitale-technologien.de/DT/Redaktion/DE/Downloads/Publikation/PAiCE_Servicerobotik_Studie.pdf?__blob=publicationFile&v=6Google ScholarGoogle Scholar
  33. Elaine Mordoch, Angela Osterreicher, Lorna Guse, Kerstin Roger, and Genevieve Thompson. 2013. Use of social commitment robots in the care of elderly people with dementia: a literature review. Maturitas 74, 1 (2013), 14–20. https://doi.org/10.1016/j.maturitas.2012.10.015Google ScholarGoogle ScholarCross RefCross Ref
  34. Wendy Moyle, Marie Cooke, Elizabeth Beattie, Cindy Jones, Barbara Klein, Glenda Cook, and Chrystal Gray. 2013. Exploring the effect of companion robots on emotional expression in older adults with dementia: a pilot randomized controlled trial. Journal of gerontological nursing 39, 5 (2013), 46–53. https://doi.org/10.3928/00989134-20130313-03Google ScholarGoogle ScholarCross RefCross Ref
  35. Wendy Moyle, Cindy Jones, Marie Cooke, Siobhan O’Dwyer, Billy Sung, and Suzie Drummond. 2014. Connecting the person with dementia and family: a feasibility study of a telepresence robot. BMC Geriatrics 14, 1 (2014). https://doi.org/10.1186/1471-2318-14-7Google ScholarGoogle ScholarCross RefCross Ref
  36. Caio Mucchiani, Pamela Cacchione, Michelle Johnson, Ross Mead, and Mark Yim. 2021. Deployment of a Socially Assistive Robot for Assessment of COVID-19 Symptoms and Exposure at an Elder Care Setting. In 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). IEEE, 1189–1195. https://doi.org/10.1109/RO-MAN50785.2021.9515551Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Tomoko Nariai, Shiroh Itai, and Hiroaki Kojima. 2021. Evaluating Effectiveness of Robot-Assisted Recreation for Older Adults by Speech Analysis. In 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech). IEEE, 240–243. https://doi.org/10.1109/LifeTech52111.2021.9391826Google ScholarGoogle ScholarCross RefCross Ref
  38. International Federation of Robotics. 2017. The Impact of Robots on Productivity, Employment and Jobs: A positioning paper by the International Federation of Robotics. https://ifr.org/img/office/IFR_The_Impact_of_Robots_on_Employment.pdfGoogle ScholarGoogle Scholar
  39. World Health Oroganization. 2022. Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-healthGoogle ScholarGoogle Scholar
  40. Richard Paluch and Claudia Müller. 2022. "That’s Something for Children". Proceedings of the ACM on Human-Computer Interaction 6, GROUP (2022), 1–35. https://doi.org/10.1145/3492850Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Chris Papadopoulos, Tetiana Hill, Linda Battistuzzi, Nina Castro, Abiha Nigath, Gurch Randhawa, Len Merton, Sanjeev Kanoria, Hiroko Kamide, Nak-Young Chong, David Hewson, Rosemary Davidson, and Antonio Sgorbissa. 2020. The CARESSES study protocol: testing and evaluating culturally competent socially assistive robots among older adults residing in long term care homes through a controlled experimental trial. Archives of public health = Archives belges de sante publique 78 (2020), 26. https://doi.org/10.1186/s13690-020-00409-yGoogle ScholarGoogle ScholarCross RefCross Ref
  42. Yeon-Hwan Park, Hee Kyung Chang, Min Hye Lee, and Seong Hyeon Lee. 2019. Community-dwelling older adults’ needs and acceptance regarding the use of robot technology to assist with daily living performance. BMC Geriatrics 19, 1 (2019), 208. https://doi.org/10.1186/s12877-019-1227-7Google ScholarGoogle ScholarCross RefCross Ref
  43. Denis Pijetlovic. 2020. Das Potential der Pflege-Robotik. Springer Fachmedien Wiesbaden, Wiesbaden. https://doi.org/10.1007/978-3-658-31965-6Google ScholarGoogle ScholarCross RefCross Ref
  44. Chloé Pou-Prom, Stefania Raimondo, and Frank Rudzicz. 2020. A Conversational Robot for Older Adults with Alzheimer’s Disease. ACM Transactions on Human-Robot Interaction 9, 3 (2020), 1–25. https://doi.org/10.1145/3380785Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. PAL Robotics. 2022. TIAGo: The mobile manipulator robot that fits and adapts to your research, not the other way around. https://pal-robotics.com/robots/tiago/Google ScholarGoogle Scholar
  46. Kerstin Roger, Lorna Guse, Elaine Mordoch, and Angela Osterreicher. 2012. Social commitment robots and dementia. Canadian journal on aging = La revue canadienne du vieillissement 31, 1 (2012), 87–94. https://doi.org/10.1017/S0714980811000663Google ScholarGoogle ScholarCross RefCross Ref
  47. Rebecca Q. Stafford, Bruce A. MacDonald, Chandimal Jayawardena, Daniel M. Wegner, and Elizabeth Broadbent. 2014. Does the Robot Have a Mind? Mind Perception and Attitudes Towards Robots Predict Use of an Eldercare Robot. International Journal of Social Robotics 6, 1 (2014), 17–32. https://doi.org/10.1007/s12369-013-0186-yGoogle ScholarGoogle ScholarCross RefCross Ref
  48. Julian Striegl, David Gollasch, Claudia Loitsch, and Gerhard Weber. 2021. Designing VUIs for Social Assistance Robots for People with Dementia. In Mensch und Computer 2021, Stefan Schneegass, Bastian Pfleging, and Dagmar Kern (Eds.). ACM, New York, NY, USA, 145–155. https://doi.org/10.1145/3473856.3473887Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. the Excellence in Research for Australia initiative. 2023. ERA’s rankings of conferences and journals. http://direction.bordeaux.inria.fr/ roussel/Google ScholarGoogle Scholar
  50. Slawomir Tobis, Agnieszka Neumann-Podczaska, Sylwia Kropinska, and Aleksandra Suwalska. 2021. UNRAQ-A Questionnaire for the Use of a Social Robot in Care for Older Persons. A Multi-Stakeholder Study and Psychometric Properties. International journal of environmental research and public health 18, 11 (2021). https://doi.org/10.3390/ijerph18116157Google ScholarGoogle ScholarCross RefCross Ref
  51. Slawomir Tobis, Joanna Piasek, Miroslawa Cylkowska-Nowak, and Aleksandra Suwalska. 2022. Robots in Eldercare: How Does a Real-World Interaction with the Machine Influence the Perceptions of Older People?Sensors (Basel, Switzerland) 22, 5 (2022). https://doi.org/10.3390/s22051717Google ScholarGoogle ScholarCross RefCross Ref
  52. Aimee van Wynsberghe. 2013. Designing robots for care: care centered value-sensitive design. Science and engineering ethics 19, 2 (2013), 407–433. https://doi.org/10.1007/s11948-011-9343-6Google ScholarGoogle ScholarCross RefCross Ref
  53. VGo. 2021. VGo. From anywhere. Go anywhere.https://www.vgocom.com/Google ScholarGoogle Scholar
  54. Kazuyoshi Wada and Takanori Shibata. 2007. Living With Seal Robots—Its Sociopsychological and Physiological Influences on the Elderly at a Care House. IEEE Transactions on Robotics 23, 5 (2007), 972–980. https://doi.org/10.1109/TRO.2007.906261Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Kazuyoshi Wada, Takanori Shibata, Toshimitsu Musha, and Shin Kimura. 2008. Robot therapy for elders affected by dementia. IEEE Engineering in Medicine and Biology Magazine 27, 4 (2008), 53–60. https://doi.org/10.1109/MEMB.2008.919496Google ScholarGoogle ScholarCross RefCross Ref
  56. Ya-Huei Wu, Jérémy Wrobel, Mélanie Cornuet, Hélène Kerhervé, Souad Damnée, and Anne-Sophie Rigaud. 2014. Acceptance of an assistive robot in older adults: a mixed-method study of human-robot interaction over a 1-month period in the Living Lab setting. Clinical interventions in aging 9 (2014), 801–811. https://doi.org/10.2147/CIA.S56435Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Systematic Literature Review on the Use of Social Robots in Elderly Care

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Article Metrics

          • Downloads (Last 12 months)30
          • Downloads (Last 6 weeks)30

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format