skip to main content
10.1145/3628797.3628903acmotherconferencesArticle/Chapter ViewAbstractPublication PagessoictConference Proceedingsconference-collections
research-article

A Shrinkage Method for Learning, Registering and Clustering Shapes of Curves

Published:07 December 2023Publication History

ABSTRACT

This paper introduces a shrinkage statistical model designed for analyzing, registering and clustering multi-dimensional curves. The model utilizes reparametrization functions that act as local distributions on curves. Given the intricate nature of the model, we establish a connection with well-understood Riemannian manifolds. This connection enables us to simplify the reparametrization space and enhance the manageability of the optimization task. Moreover, we provide empirical evidence of the practical usefulness of our proposed method by applying it to a potential application involving the clustering of hominin cochlear shapes. Looking ahead, our research interests lie in the development of theoretical extensions that can accommodate more complex spaces. By exploring new aspects of manifold learning and inference on high-dimensional manifolds, we aim to further advance the field.

References

  1. S-I. Amari. 1983. Differential geometry of statistical inference. Springer, Berlin, Heidelberg.Google ScholarGoogle Scholar
  2. Jos M. F. Ten Berge. 1977. Orthogonal procrustes rotation for two or more matrices. Psychometrika 42 (1977), 267–276.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Bhattacharya and R. Bhattacharya. 2012. Nonparametric inference on manifolds: with applications to shape spaces (1st ed.). Cambridge University Press, New York, USA.Google ScholarGoogle Scholar
  4. J. Braga, C. Samir, Anis Fradi, Y. Feunteun, K. Jakata, V. Zimmer, B. Zipfel, J. Thackeray, M. Macé, B. Wood, and F. Grine. 2021. Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies. Scientific Reports 11 (2021), 17018.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. W. Bryner and A. Srivastava. 2022. Shape analysis of functional data with Elastic partial matching. IEEE Trans. Pattern Anal. Mach. Intell. 44 (2022), 9589–9602.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Chen and A. Srivastava. 2021. SrvfRegNet: Elastic function registration using deep neural networks. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE.Google ScholarGoogle Scholar
  7. X. Chen, N. Ravikumar, Y. Xia, R. Attar, A. Diaz-Pinto, S.K. Piechnik, S. Neubauer, S.E. Petersen, and A.F. Frangi. 2021. Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds. Medical Image Analysis 74 (2021), 102228.Google ScholarGoogle ScholarCross RefCross Ref
  8. I. L. Dryden and K. V. Mardia. 2016. Statistical shape analysis, with applications in R (2nd ed.). John Wiley and Sons, Chichester.Google ScholarGoogle Scholar
  9. A. Fradi, C. Samir, J. Braga, S. H. Joshi, and J-M. Loubes. 2022. Nonparametric Bayesian regression and classification on manifolds, with applications to 3D cochlear shapes. IEEE Transactions on Image Processing 31 (2022), 2598–2607.Google ScholarGoogle ScholarCross RefCross Ref
  10. K. Fritzsche and H. Grauert. 2002. From holomorphic functions to complex manifolds. Springer, New York, USA.Google ScholarGoogle Scholar
  11. C. Goodall. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society 53 (1991), 285–339.Google ScholarGoogle Scholar
  12. Z. He, J. Zhang, M. Kan, S. Shan, and X. Chen. 2017. Robust FEC-CNN: a high accuracy facial landmark detection system. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, Honolulu, HI, USA, 2044–2050.Google ScholarGoogle Scholar
  13. A. E. Hoerl and R. W. Kennard. 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12 (1970), 55–67.Google ScholarGoogle Scholar
  14. A. Holbrook, S. Lan, J. Streets, and B. Shahbaba. 2020. Nonparametric Fisher Geometry with application to density estimation. In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)(Proceedings of Machine Learning Research, Vol. 124). PMLR, 101–110.Google ScholarGoogle Scholar
  15. X. Huang, N. Paragios, and D.N. Metaxas. 2006. Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006), 1303–1318.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. I.T. Jolliffe. 1986. Principal component analysis. Springer Verlag, New York, USA.Google ScholarGoogle Scholar
  17. Shantanu H. Joshi, Ryan P. Cabeen, Anand A. Joshi, Bo Sun, Ivo Dinov, Katherine L. Narr, Arthur W. Toga, and Roger P. Woods. 2012. Diffeomorphic sulcal shape analysis on the cortex. IEEE Transactions on Medical Imaging 31 (2012), 1195–1212.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. H. Joshi, E. Klassen, A. Srivastava, and I. Jermyn. 2007. A novel representation for Riemannian analysis of elastic curves in . In Conference on Computer Vision and Pattern Recognition. IEEE, Piscataway, New Jersey, 1–7.Google ScholarGoogle Scholar
  19. D. G. Kendall. 1984. Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of The London Mathematical Society 16 (1984), 81–121.Google ScholarGoogle ScholarCross RefCross Ref
  20. J.B. Kruskal and M. Wish. 1978. Multidimensional Scaling. Sage Publications, Newbury Park, California.Google ScholarGoogle Scholar
  21. S. J. Maybank. 2005. The Fisher-Rao metric for projective transformations of the line. International Journal of Computer Vision 63 (2005), 191–206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Peter and A. Rangarajan. 2006. Shape analysis using the Fisher-Rao Riemannian metric: unifying shape representation and deformation. In 3rd IEEE International Symposium on Biomedical Imaging. Arlington, VA, USA, 1164–1167.Google ScholarGoogle Scholar
  23. A. M. Peter, A. Rangarajan, and M. Moyou. 2017. The geometry of orthogonal-series, square-root density estimators: applications in computer vision and model selection. In Computational Information Geometry. Springer, Cham, 175–215.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Srivastava, S.H. Joshi, W. Mio, and Xiuwen Liu. 2005. Statistical shape analysis: clustering, learning, and testing. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005), 590–602.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Srivastava and E. Klassen. 2016. Functional and shape data analysis. Springer-Verlag, New York, USA.Google ScholarGoogle Scholar
  26. A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. 2011. Shape analysis of Elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (2011), 1415–1428.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. G. Trappolini, L. Cosmo, L. Moschella, R. Marin, S. Melzi, and E. Rodolà. 2021. Shape registration in the time of transformers. In Advances in Neural Information Processing Systems. 1–14.Google ScholarGoogle Scholar
  28. R. Vandaele, J. Aceto, M. Muller, F. Péronnet, V. Debat, C-W. Wang, C-T. Huang, S. Jodogne, P. Martinive, P. Geurts, and R. Marée. 2018. Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach. Scientific Reports 8 (2018), 1–14.Google ScholarGoogle ScholarCross RefCross Ref
  29. H.D. Vinod. 1995. Double bootstrap for shrinkage estimators. Journal of Econometrics 68 (1995), 287–302.Google ScholarGoogle ScholarCross RefCross Ref
  30. X. Wan, Y. Wu, and X. Li. 2022. Learning robust shape-indexed features for facial landmark detection. Applied Sciences 12, 12 (2022).Google ScholarGoogle Scholar

Index Terms

  1. A Shrinkage Method for Learning, Registering and Clustering Shapes of Curves

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          SOICT '23: Proceedings of the 12th International Symposium on Information and Communication Technology
          December 2023
          1058 pages
          ISBN:9798400708916
          DOI:10.1145/3628797

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 December 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate147of318submissions,46%
        • Article Metrics

          • Downloads (Last 12 months)22
          • Downloads (Last 6 weeks)3

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format