skip to main content
research-article

Non-intrusive Human Vital Sign Detection Using mmWave Sensing Technologies: A Review

Published:03 November 2023Publication History
Skip Abstract Section

Abstract

Non-invasive human vital sign detection has gained significant attention in recent years, with its potential for contactless, long-term monitoring. Advances in radar systems have enabled non-contact detection of human vital signs, emerging as a crucial area of research. The movements of key human organs influence radar signal propagation, offering researchers the opportunity to detect vital signs by analyzing received electromagnetic (EM) signals. In this review, we provide a comprehensive overview of the current state-of-the-art in millimeter-wave (mmWave) sensing for vital sign detection. We explore human anatomy and various measurement methods, including contact and non-contact approaches, and summarize the principles of mmWave radar sensing. To demonstrate how EM signals can be harnessed for vital sign detection, we discuss four mmWave-based vital sign sensing (MVSS) signal models and elaborate on the signal processing chain for MVSS. Additionally, we present an extensive review of deep learning-based MVSS and compare existing studies. Finally, we offer insights into specific applications of MVSS (e.g., biometric authentication) and highlight future research trends in this domain.

REFERENCES

  1. [1] Fortune Business Insights. Remote Patient Monitoring Devices Market, Global Report [2028]. Retrieved from https://www.fortunebusinessinsights.com/remote-patient-monitoring-devices-market-106328Google ScholarGoogle Scholar
  2. [2] World Health Organization. Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)Google ScholarGoogle Scholar
  3. [3] World Health Organization. Noncommunicable diseases. Retrieved from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseasesGoogle ScholarGoogle Scholar
  4. [4] Wang Fengyu, Xiaolu Zeng, Chenshu Wu, Beibei Wang, and K. J. Ray Liu. 2022. Driver vital signs monitoring using millimeter wave radio. IEEE Internet of Things Journal 9, 13 (2022), 11283–11298.Google ScholarGoogle Scholar
  5. [5] Wu Shiyou, Yao Siqi, Liu Wei, Tan Kai, Xia Zhenghuan, Meng Shengwei, Chen Jie, Fang Guangyou, and Yin Hejun. 2016. Study on a novel UWB linear array human respiration model and detection method. IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. 9, 1 (2016), 125140.Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Cao Peibei, Xia Weijie, and Li Yi. 2019. Heart ID: Human identification based on radar micro-doppler signatures of the heart using deep learning. Rem. Sens. 11, 10 (2019), 1220.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Han Yang, Lauteslager Timo, Lande Tor S., and Constandinou Timothy G.. 2019. UWB radar for non-contact heart rate variability monitoring and mental state classification. In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’19). IEEE, 65786582.Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Tran Vinh Phuc, Al-Jumaily Adel Ali, and Islam Syed Mohammed Shamsul. 2019. Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review. Big Data Cognit. Comput. 3, 1 (2019), 3.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Leonhardt Steffen, Leicht Lennart, and Teichmann Daniel. 2018. Unobtrusive vital sign monitoring in automotive environments–A review. Sensors 18, 9 (2018), 3080.Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Cardillo Emanuele and Caddemi Alina. 2020. A review on biomedical MIMO radars for vital sign detection and human localization. Electronics 9, 9 (2020), 1497.Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Kebe Mamady, Gadhafi Rida, Mohammad Baker, Sanduleanu Mihai, Saleh Hani, and Al-Qutayri Mahmoud. 2020. Human vital signs detection methods and potential using radars: A review. Sensors 20, 5 (2020), 1454.Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Singh Anuradha, Rehman Saeed Ur, Yongchareon Sira, and Chong Peter Han Joo. 2020. Multi-resident non-contact vital sign monitoring using radar: A review. IEEE Sensors J. 21, 4 (2020), 40614084.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Obadi Ameen Bin, Soh Ping Jack, Aldayel Omar, Al-Doori Muataz Hameed, Mercuri Marco, and Schreurs Dominique. 2021. A survey on vital signs detection using radar techniques and processing with FPGA implementation. IEEE Circ. Syst. Mag. 21, 1 (2021), 4174.Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Paterniani Giacomo, Daria Sgreccia, Alessandro Davoli, Giorgio Guerzoni, Pasquale Di Viesti, Anna Chiara Valenti, Marco Vitolo, Giorgio M. Vitetta, and Giuseppe Boriani. 2023. Radar-based monitoring of vital signs: A tutorial overview. Proceedings of the IEEE 111, 3 (2023), 277–317.Google ScholarGoogle Scholar
  15. [15] Zhang Jia, Rui Xi, Yuan He, Yimiao Sun, Xiuzhen Guo, Weiguo Wang, Xin Na, Yunhao Liu, Zhenguo Shi, and Tao Gu. 2023. A survey of mmWave-based human sensing: Technology, platforms and applications. IEEE Communications Surveys & Tutorials, 1–1.Google ScholarGoogle Scholar
  16. [16] Shaffer Fred, McCraty Rollin, and Zerr Christopher L.. 2014. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5 (2014), 1040.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Klabunde R. E.. 2011. Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins, Baltimore, MD.Google ScholarGoogle Scholar
  18. [18] Mercuri Marco, Lorato Ilde Rosa, Liu Yao-Hong, Wieringa Fokko, Hoof Chris Van, and Torfs Tom. 2019. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2, 6 (2019), 252262.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Awtry Eric, Jeon Cathy, and Ware Molly G.. 2006. Blueprints Cardiology. Lippincott Williams & Wilkins.Google ScholarGoogle Scholar
  20. [20] Taylor C. Barr. 2010. Depression, heart rate related variables and cardiovascular disease. Int. J. Psychophysiol. 78, 1 (2010), 8088.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Melillo Paolo, Bracale Marcello, and Pecchia Leandro. 2011. Nonlinear heart rate variability features for real-life stress detection. Case study: Students under stress due to university examination. Biomed. Eng. Online 10, 1 (2011), 113.Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Drake Richard, Vogl A. Wayne, and Mitchell Adam W. M.. 2009. Gray’s Anatomy for Students E-book. Elsevier Health Sciences.Google ScholarGoogle Scholar
  23. [23] Brace C. Loring. 2002. Anatomy & physiology: The unity of form and function. JSTOR 2002, Vol. 77.Google ScholarGoogle Scholar
  24. [24] Leach Richard M.. 2008. Symptoms and signs of respiratory disease. Medicine 36, 3 (2008), 119125.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Fuchs Flávio D. and Whelton Paul K.. 2020. High blood pressure and cardiovascular disease. Hypertension 75, 2 (2020), 285292.Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Williams Bryan, Giuseppe Mancia, Wilko Spiering, Enrico Agabiti Rosei, Michel Azizi, Michel Burnier, Denis L. Clement, Antonio Coca, Giovanni de Simone, Anna Dominiczak, Thomas Kahan, Felix Mahfoud, Josep Redon, Luis Ruilope, Alberto Zanchetti, Mary Kerins, Sverre E. Kjeldsen, Reinhold Kreutz, Stephane Laurent, Gregory Y. H. Lip, Richard McManus, Krzysztof Narkiewicz, Frank Ruschitzka, Roland E. Schmieder, Evgeny Shlyakhto, Costas Tsioufis, Victor Aboyans, Ileana Desormais, and ESC Scientific Document Group. 2018. 2018 ESC/ESH guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). European Heart Journal 39, 33 (2018), 3021–3104.Google ScholarGoogle Scholar
  27. [27] AlGhatrif Majd and Lindsay Joseph. 2012. A brief review: History to understand fundamentals of electrocardiography. J. Commun. Hosp. Intern. Med. Perspect. 2, 1 (2012), 14383.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Schmidt Marcus, Schumann Andy, Mueller Jonas, Baer Karl-Juergen, and Rose Georg. 2017. ECG derived respiration: Comparison of time-domain approaches and application to altered breathing patterns of patients with schizophrenia. Physiol. Measur. 38, 4 (2017), 601.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Paiva R. P., Carvalho P., Couceiro R., Henriques J., Antunes M., Quintal I., and Muehlsteff J.. 2012. Beat-to-beat systolic time-interval measurement from heart sounds and ECG. Physiol. Measur. 33, 2 (2012), 177.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Migeotte Pierre-François, Ridder Sven De, Tank Jens, Pattyn Nathalie, Funtova Irina, Baevsky R., Neyt Xavier, and Prisk Gordon Kim. 2012. Three dimensional ballisto-and seismo-cardiography: HIJ wave amplitudes are poorly correlated to maximal systolic force vector. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 50465049.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Allen John. 2007. Photoplethysmography and its application in clinical physiological measurement. Physiol. Measur. 28, 3 (2007), R1.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Garbey Marc, Sun Nanfei, Merla Arcangelo, and Pavlidis Ioannis. 2007. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 54, 8 (2007), 14181426.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Murthy Ramya and Pavlidis Ioannis. 2006. Noncontact measurement of breathing function. IEEE Eng. Med. Biol. Mag. 25, 3 (2006), 5767.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Kumar Mayank, Veeraraghavan Ashok, and Sabharwal Ashutosh. 2015. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomed. Opt. Expr. 6, 5 (2015), 15651588.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Fan Xijian, Ye Qiaolin, Yang Xubing, and Choudhury Sruti Das. 2020. Robust blood pressure estimation using an RGB camera. J. Amb. Intell. Human. Comput. 11, 11 (2020), 43294336.Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Qian Kun, Wu Chenshu, Xiao Fu, Zheng Yue, Zhang Yi, Yang Zheng, and Liu Yunhao. 2018. Acousticcardiogram: Monitoring heartbeats using acoustic signals on smart devices. In IEEE Conference on Computer Communications. IEEE, 15741582.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Wang Anran, Nguyen Dan, Sridhar Arun R., and Gollakota Shyamnath. 2021. Using smart speakers to contactlessly monitor heart rhythms. Commun. Biol. 4, 1 (2021), 112.Google ScholarGoogle Scholar
  38. [38] Cosoli G., Casacanditella L., Tomasini E. P., and Scalise L.. 2015. Evaluation of heart rate variability by means of laser doppler vibrometry measurements. In Journal of Physics: Conference Series, Vol. 658. IOP Publishing, 012002.Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Johnson Jessi E., Shay Oliver, Kim Chris, and Liao Catherine. 2019. Wearable millimeter-wave device for contactless measurement of arterial pulses. IEEE Trans. Biomed. Circ. Syst. 13, 6 (2019), 15251534.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Ramasubramanian Karthik and Ramaiah Kishore. 2018. Moving from legacy 24 GHz to state-of-the-art 77-GHz radar. ATZelektron. Worldw. 13, 3 (2018), 4649.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Lee Yonggu, Park Jun-Young, Choi Yeon-Woo, Park Hyun-Kyung, Cho Seok-Hyun, Cho Sung Ho, and Lim Young-Hyo. 2018. A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology. Scient. Rep. 8, 1 (2018), 110.Google ScholarGoogle Scholar
  42. [42] Yamamoto Kohei, Endo Koji, and Ohtsuki Tomoaki. 2021. Remote sensing of heartbeat based on space diversity using MIMO FMCW Radar. In IEEE Global Communications Conference (GLOBECOM’21). IEEE, 16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Ren Lingyun, Kong Lingqin, Foroughian Farnaz, Wang Haofei, Theilmann Paul, and Fathy Aly E.. 2017. Comparison study of noncontact vital signs detection using a Doppler stepped-frequency continuous-wave radar and camera-based imaging photoplethysmography. IEEE Trans. Microw. Theor. Techniq. 65, 9 (2017), 35193529.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Zhang Fusang, Zhang Daqing, Xiong Jie, Wang Hao, Niu Kai, Jin Beihong, and Wang Yuxiang. 2018. From Fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 1 (2018), 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Hillyard Peter, Luong Anh, Abrar Alemayehu Solomon, Patwari Neal, and Pollard Sarah Hatch. 2018. Experience: Cross-technology radio respiratory monitoring performance study. In 24th Annual International Conference on Mobile Computing and Networking.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Wang Dingyang, Yoo Sungwon, and Cho Sung Ho. 2020. Experimental comparison of IR-UWB radar and FMCW radar for vital signs. Sensors 20, 22, 6695 (2020), 122.Google ScholarGoogle Scholar
  47. [47] Khan Faheem, Ghaffar Asim, Khan Naeem, and Cho Sung Ho. 2020. An overview of signal processing techniques for remote health monitoring using impulse radio UWB transceiver. Sensors 20, 9 (2020), 2479.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Liang Xiaolin, Jianqin Deng, Hao Zhang, and Thomas Aaron Gulliver. 2018. Ultra-wideband impulse radar through-wall detection of vital signs. Scientific Reports, 8, 1 (2018), 13367.Google ScholarGoogle Scholar
  49. [49] Liang Xiaolin, Lv Tingting, Zhang Hao, Gao Yong, and Fang Guangyou. 2018. Through-wall human being detection using UWB impulse radar. EURASIP J. Wirel. Commun. Netw. 2018, 1 (2018), 46.Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Rong Yu, Theofanopoulos Panagiotis C., Trichopoulos Georgios C., and Bliss Daniel W.. 2020. Cardiac sensing exploiting an ultra-wideband terahertz sensing system. In IEEE International Radar Conference (RADAR’20).Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Rong Yu, Panagiotis C. Theofanopoulos, Georgios C. Trichopoulos, and Daniel W. Bliss. 2022. A new principle of pulse detection based on terahertz wave plethysmography. Scientific Reports, 12, 1 (2022), 6347.Google ScholarGoogle Scholar
  52. [52] Wang Fu-Kang, Wu Chung-Tse Michael, Horng Tzyy-Sheng, Tseng Chao-Hsiung, Yu Shiang-Hwua, Chang Chia-Chan, Juan Pin-Hsun, and Yuan Yichao. 2020. Review of self-injection-locked radar systems for noncontact detection of vital signs. IEEE J. Electromag., RF Microw. Med. Biol. 4, 4 (2020), 294307.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Alizadeh Mostafa, Shaker George, Almeida João Carlos Martins De, Morita Plinio Pelegrini, and Safavi-Naeini Safeddin. 2019. Remote monitoring of human vital signs using mm-Wave FMCW radar. IEEE Access 7 (2019), 5495854968.Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Wang Yong, Wang Wen, Zhou Mu, Ren Aihu, and Tian Zengshan. 2020. Remote monitoring of human vital signs based on 77-GHz mm-Wave FMCW radar. Sensors 20, 10 (2020), 2999.Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Zhao Yanhua, Sark Vladica, Krstic Milos, and Grass Eckhard. 2021. Multi-target vital signs remote monitoring using mmWave FMCW radar. In IEEE Microwave Theory and Techniques in Wireless Communications (MTTW’21). IEEE, 290295.Google ScholarGoogle Scholar
  56. [56] Mehrotra Parikha, Chatterjee Baibhab, and Sen Shreyas. 2019. EM-wave biosensors: A review of RF, microwave, mm-Wave and optical sensing. Sensors 19, 5 (2019), 1013.Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Park J.-H., Kim C.-S., Choi B.-C., and Ham K.-Y.. 2003. The correlation of the complex dielectric constant and blood glucose at low frequency. Biosens. Bioelectron. 19, 4 (2003), 321324.Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Yueh Simon H., West Richard, Wilson William J., Li Fuk K., Njoku Eni G., and Rahmat-Samii Yahya. 2001. Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans. Geosci. Rem. Sens. 39, 5 (2001), 10491060.Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Xu Chenhan, Li Huining, Li Zhengxiong, Zhang Hanbin, Rathore Aditya Singh, Chen Xingyu, Wang Kun, Huang Ming-chun, and Xu Wenyao. 2021. CardiacWave: A mmWave-based scheme of non-contact and high-definition heart activity computing. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 5, 3 (2021), 126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. [60] Mercuri Marco, Schreurs Dominique, and Leroux Paul. 2012. SFCW microwave radar for in-door fall detection. In IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS’12). IEEE, 5356.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Capon Jack. 1969. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57, 8 (1969), 14081418.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Frost Otis Lamont. 1972. An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60, 8 (1972), 926935.Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Schmidt Ralph. 1986. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenn. Propag. 34, 3 (1986), 276280.Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Roy Richard, Paulraj A., and Kailath Thomas. 1986. Estimation of signal parameters via rotational invariance techniques-ESPRIT. In IEEE Military Communications Conference: Communications-Computers: Teamed for the 90’s (MILCOM’86), Vol. 3. IEEE, 4146.Google ScholarGoogle Scholar
  65. [65] Kumaresan Ramdas and Tufts Donald W.. 1983. Estimating the angles of arrival of multiple plane waves. IEEE Trans. Aerosp. Electron. Syst.1 (1983), 134139.Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Barabell Arthur. 1983. Improving the resolution performance of eigenstructure-based direction-finding algorithms. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’83), Vol. 8. IEEE, 336339.Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Zhang Xian-Da and Liang Ying-Chang. 1995. Prefiltering-based ESPRIT for estimating sinusoidal parameters in non-Gaussian ARMA noise. IEEE Trans. Sig. Process. 43, 1 (1995), 349353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. [68] Ahmad Adeel, Roh June Chul, Wang Dan, and Dubey Aish. 2018. Vital signs monitoring of multiple people using a FMCW millimeter-wave sensor. In IEEE Radar Conference (RadarConf’18). IEEE, 14501455.Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Jia Yong, Guo Yong, Yan Chao, Sheng Haoxuan, Cui Guolong, and Zhong Xiaoling. 2019. Detection and localization for multiple stationary human targets based on cross-correlation of dual-station SFCW radars. Rem. Sens. 11, 12 (2019), 1428.Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Liu Kang, Ding Chenxu, and Zhang Yuanhui. 2020. A coarse-to-fine robust estimation of FMCW radar signal for vital sign detection. In IEEE Radar Conference (RadarConf’20). IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Walterscheid Ingo, Biallawons Oliver, and Berens Patrick. 2019. Contactless respiration and heartbeat monitoring of multiple people using a 2-D imaging radar. In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’19). IEEE, 37203725.Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Acar Yunus Emre, Saritas Ismail, and Yaldiz Ercan. 2021. An experimental study: Detecting the respiration rates of multiple stationary human targets by stepped frequency continuous wave radar. Measurement 167 (2021), 108268.Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Wang Fengyu, Zhang Feng, Wu Chenshu, Wang Beibei, and Liu K. J. Ray. 2020. ViMo: Multiperson vital sign monitoring using commodity millimeter-wave radio. IEEE Internet Things J. 8, 3 (2020), 12941307.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Wang Fengyu, Zeng Xiaolu, Wu Chenshu, Wang Beibei, and Liu K. J. Ray. 2021. mmHRV: Contactless heart rate variability monitoring using millimeter-wave radio. IEEE Internet Things J. 8, 22 (2021), 1662316636.Google ScholarGoogle ScholarCross RefCross Ref
  75. [75] Ha Unsoo, Assana Salah, and Adib Fadel. 2020. Contactless seismocardiography via deep learning radars. In 26th Annual International Conference on Mobile Computing and Networking. 114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. [76] Yang Zhicheng, Pathak Parth H., Zeng Yunze, Liran Xixi, and Mohapatra Prasant. 2016. Monitoring vital signs using millimeter wave. In 17th ACM International Symposium on Mobile ad hoc Networking and Computing. 211220.Google ScholarGoogle Scholar
  77. [77] Yu Xiaogang, Li Changzhi, and Lin Jenshan. 2011. Two-dimensional noncontact vital sign detection using Doppler radar array approach. In IEEE MTT-S International Microwave Symposium. IEEE, 14.Google ScholarGoogle Scholar
  78. [78] Rong Yu, Dutta Arindam, Chiriyath Alex, and Bliss Daniel W.. 2021. Motion-tolerant non-contact heart-rate measurements from radar sensor fusion. Sensors 21, 5 (2021), 1774.Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Gu Changzhan, Wang Guochao, Li Yiran, Inoue Takao, and Li Changzhi. 2013. A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection. IEEE Trans. Microw. Theor. Techniq. 61, 12 (2013), 46784688.Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Yang Zi-Kai, Shi Heping, Zhao Sheng, and Huang Xiang-Dong. 2020. Vital sign detection during large-scale and fast body movements based on an adaptive noise cancellation algorithm using a single Doppler radar sensor. Sensors 20, 15 (2020), 4183.Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Zhao Xi, Song Chenyan, Lubecke Victor, and Boric-Lubecke Olga. 2011. DC coupled Doppler radar physiological monitor. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 19091912.Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] Gu Changzhan, Li Ruijiang, Zhang Hualiang, Fung Albert Y. C., Torres Carlos, Jiang Steve B., and Li Changzhi. 2012. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy. IEEE Trans. Biomed. Eng. 59, 11 (2012), 31173123.Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] Huang Ming-Chun, Liu Jason J., Xu Wenyao, Gu Changzhan, Li Changzhi, and Sarrafzadeh Majid. 2015. A self-calibrating radar sensor system for measuring vital signs. IEEE Trans. Biomed. Circ. Syst. 10, 2 (2015), 352363.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Wang Xuyu, Yang Chao, and Mao Shiwen. 2017. PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In IEEE 37th International Conference on Distributed Computing Systems (ICDCS’17). IEEE, 12301239.Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Zeng Youwei, Wu Dan, Gao Ruiyang, Gu Tao, and Zhang Daqing. 2018. FullBreathe: Full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 3 (2018), 119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. [86] Zeng Youwei, Wu Dan, Xiong Jie, Yi Enze, Gao Ruiyang, and Zhang Daqing. 2019. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 3, 3 (2019), 126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. [87] Mercuri Marco, Lu Yiting, Polito Salvatore, Wieringa Fokko, Liu Yao-Hong, Veen Alle-Jan van der, Hoof Chris Van, and Torfs Tom. 2021. Enabling robust radar-based localization and vital signs monitoring in multipath propagation environments. IEEE Trans. Biomed. Eng. 68, 11 (2021), 32283240.Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Massagram Wansuree, Lubecke Victor M., HØst-Madsen Anders, and Boric-Lubecke Olga. 2009. Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar. IEEE Trans. Microw. Theor. Techniq. 57, 10 (2009), 25422549.Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Vo Dai Toan K., Kellen Oleksak, Tsotne Kvelashvili, Farnaz Foroughian, Chandler Bauder, Paul Theilmann, Aly E. Fathy, and Ozlem Kilic. 2021. Enhancement of remote vital sign monitoring detection accuracy using multiple-input multiple-output 77 ghz fmcw radar. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 6, 1 (2021), 111–122.Google ScholarGoogle Scholar
  90. [90] Lee Hyunjae, Kim Byung-Hyun, Park Jin-Kwan, and Yook Jong-Gwan. 2019. A novel vital-sign sensing algorithm for multiple subjects based on 24-GHz FMCW Doppler radar. Rem. Sens. 11, 10 (2019), 1237.Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Huang Qianlan, Lu Dawei, Hu Jiemin, Fan Hongqi, Liang Meirong, and Zhang Jun. 2019. Simultaneous location and parameter estimation of human vital sign with MIMO-FMCW radar. In IEEE International Conference on Signal, Information and Data Processing (ICSIDP’19). IEEE, 14.Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Wang Weicheng, Jia Zhenhua, Xu Chenren, Luo Guojie, Zhang Daqing, An Ning, and Zhang Yanyong. 2021. Feasibility study of practical vital sign detection using millimeter-wave radios. CCF Trans. Pervas. Comput. Interact. 3, 4 (2021), 436452.Google ScholarGoogle ScholarCross RefCross Ref
  93. [93] Chen Jinbo, Zhang Dongheng, Wu Zhi, Zhou Fang, Sun Qibin, and Chen Yan. 2021. Contactless electrocardiogram monitoring with millimeter wave radar. arXiv preprint arXiv:2112.06639 (2021).Google ScholarGoogle Scholar
  94. [94] He Mi, Nian Yongjian, and Gong Yushun. 2017. Novel signal processing method for vital sign monitoring using FMCW radar. Biomed. Sig. Process. Contr. 33 (2017), 335345.Google ScholarGoogle ScholarCross RefCross Ref
  95. [95] Gilles Jerome. 2013. Empirical wavelet transform. IEEE Trans. Sig. Process. 61, 16 (2013), 39994010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. [96] Fowler James E.. 2005. The redundant discrete wavelet transform and additive noise. IEEE Sig. Process. Lett. 12, 9 (2005), 629632.Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] Acar Yunus Emre, Saritas Ismail, and Yaldiz Ercan. 2021. An S-band zero-IF SFCW through-the-wall radar for range, respiration rate, and DOA estimation. Measurement 186 (2021), 110221.Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] He Mi, Nian Yongjian, Xu Luping, Qiao Lihong, and Wang Wenwu. 2020. Adaptive separation of respiratory and heartbeat signals among multiple people based on empirical wavelet transform using UWB radar. Sensors 20, 17 (2020), 4913.Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Huang Norden E., Shen Zheng, Long Steven R., Wu Manli C., Shih Hsing H., Zheng Quanan, Yen Nai-Chyuan, Tung Chi Chao, and Liu Henry H.. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Series A: Math., Phys. Eng. Sci. 454, 1971 (1998), 903995.Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Weishaupt Fabio, Walterscheid Ingo, Biallawons Oliver, and Klare Jens. 2018. Vital sign localization and measurement using an LFMCW MIMO radar. In 19th International Radar Symposium (IRS’18). IEEE, 18.Google ScholarGoogle Scholar
  101. [101] Wu Zhaohua and Huang Norden E.. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 01 (2009), 141.Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Torres María E., Colominas Marcelo A., Schlotthauer Gaston, and Flandrin Patrick. 2011. A complete ensemble empirical mode decomposition with adaptive noise. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’11). IEEE, 41444147.Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Sun Li, Huang Shuaiming, Li Yusheng, Gu Chen, Pan Hao, Hong Hong, and Zhu Xiaohua. 2020. Remote measurement of human vital signs based on joint-range adaptive EEMD. IEEE Access 8 (2020), 6851468524.Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Huang Ching-Yao, Fang Guan-Wei, Chuang Huey-Ru, and Yang Chin-Lung. 2019. Clutter-resistant vital sign detection using amplitude-based demodulation by EEMD-PCA-correlation algorithm for FMCW radar systems. In 49th European Microwave Conference (EuMC’19). IEEE, 928931.Google ScholarGoogle ScholarCross RefCross Ref
  105. [105] Ren Lingyun, Wang Haofei, Naishadham Krishna, Liu Quanhua, and Fathy Aly E.. 2015. Non-invasive detection of cardiac and respiratory rates from stepped frequency continuous wave radar measurements using the state space method. In IEEE MTT-S International Microwave Symposium. IEEE, 14.Google ScholarGoogle Scholar
  106. [106] Dragomiretskiy Konstantin and Zosso Dominique. 2013. Variational mode decomposition. IEEE Trans. Sig. Process. 62, 3 (2013), 531544.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. [107] Xia Zi Liang, Wang Xin Huai, Wei Hong Bo, and Xu Yin. 2021. Detection of vital signs based on variational mode decomposition using FMCW radar. In International Conference on Microwave and Millimeter Wave Technology (ICMMT’21). IEEE, 13.Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Hu Yuxuan, Xia Zhaoyang, and Xu Feng. 2021. Using FMCW millimeter-wave radar to realize the detection of vital signs. In International Conference on Microwave and Millimeter Wave Technology (ICMMT’21). IEEE, 13.Google ScholarGoogle ScholarCross RefCross Ref
  109. [109] Arsalan Muhammad, Santra Avik, and Will Christoph. 2020. Improved contactless heartbeat estimation in FMCW radar via Kalman filter tracking. IEEE Sensors Lett. 4, 5 (2020), 14.Google ScholarGoogle ScholarCross RefCross Ref
  110. [110] Steptoe Andrew, Smulyan Harold, and Gribbin Brian. 1976. Pulse wave velocity and blood pressure change: Calibration and applications. Psychophysiology 13, 5 (1976), 488493.Google ScholarGoogle ScholarCross RefCross Ref
  111. [111] Gribbin Brian, Steptoe Andrew, and Sleight Peter. 1976. Pulse wave velocity as a measure of blood pressure change. Psychophysiology 13, 1 (1976), 8690.Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Teng X. F. and Zhang Yuan-Ting. 2006. An evaluation of a PTT-based method for noninvasive and cuffless estimation of arterial blood pressure. In International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 60496052.Google ScholarGoogle ScholarCross RefCross Ref
  113. [113] Guyton Arthur C.. 1981. The relationship of cardiac output and arterial pressure control. Circulation 64, 6 (1981), 10791088.Google ScholarGoogle ScholarCross RefCross Ref
  114. [114] Wang Ruiping, Jia Wenyan, Mao Zhi-Hong, Sclabassi Robert J., and Sun Mingui. 2014. Cuff-free blood pressure estimation using pulse transit time and heart rate. In 12th International Conference on Signal Processing (ICSP’14). IEEE, 115118.Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Buxi Dilpreet, Redouté Jean-Michel, and Yuce Mehmet Rasit. 2016. Blood pressure estimation using pulse transit time from bioimpedance and continuous wave radar. IEEE Trans. Biomed. Eng. 64, 4 (2016), 917927.Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Tang Mu-Cyun, Liao Chien-Min, Wang Fu-Kang, and Horng Tzyy-Sheng. 2018. Noncontact pulse transit time measurement using a single-frequency continuous-wave radar. In IEEE/MTT-S International Microwave Symposium (IMS’18). IEEE, 14091412.Google ScholarGoogle Scholar
  117. [117] Wu Ting, Rappaport Theodore S., and Collins Christopher M.. 2015. Safe for generations to come: Considerations of safety for millimeter waves in wireless communications. IEEE Microw. Mag. 16, 2 (2015), 6584.Google ScholarGoogle ScholarCross RefCross Ref
  118. [118] Rappaport Theodore S., Xing Yunchou, Kanhere Ojas, Ju Shihao, Madanayake Arjuna, Mandal Soumyajit, Alkhateeb Ahmed, and Trichopoulos Georgios C.. 2019. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 7 (2019), 7872978757.Google ScholarGoogle ScholarCross RefCross Ref
  119. [119] Wang Congming, Xiaohui Zhao, and Zan Li. 2023. Dcs-ctn: Subtle gesture recognition based on td-cnn-transformer via millimeter-wave radar. IEEE Internet of Things Journal 10, 20 (2023), 17680–17693.Google ScholarGoogle Scholar
  120. [120] Iyer Srikrishna, Zhao Leo, Mohan Manoj Prabhakar, Jimeno Joe, Siyal Mohammed Yakoob, Alphones Arokiaswami, and Karim Muhammad Faeyz. 2022. mm-Wave radar-based vital signs monitoring and arrhythmia detection using machine learning. Sensors 22, 9 (2022), 3106.Google ScholarGoogle ScholarCross RefCross Ref
  121. [121] Ren Lingyun, Nahar Sabikun, Fathy Aly E., Phan Tuan, Tran Nghia, and Kilic Ozlem. 2016. Investigation of vital signs monitoring errors due to subject’s orientation, clothing and distance from a SFCW radar. In IEEE International Symposium on Antennas and Propagation (APSURSI’16). IEEE, 11711172.Google ScholarGoogle Scholar
  122. [122] Nahar Sabikun, Phan Tuan, Quaiyum Farhan, Ren Lingyun, Fathy Aly E., and Kilic Ozlem. 2018. An electromagnetic model of human vital signs detection and its experimental validation. IEEE J. Emerg. Select. Topics Circ. Syst. 8, 2 (2018), 338349.Google ScholarGoogle ScholarCross RefCross Ref
  123. [123] Li Gen, Ge Yun, Wang Yiyu, Chen Qingwu, and Wang Gang. 2022. Detection of human breathing in non-line-of-sight region by using mmWave FMCW radar. IEEE Trans. Instrum. Measur. 71 (2022), 111.Google ScholarGoogle ScholarCross RefCross Ref
  124. [124] Kim Jong Deok, Won Hyuk Lee, Yonggu Lee, Hyun Ju Lee, Teahyen Cha, Seung Hyun Kim, Ki-Min Song, Young-Hyo Lim, Seok Hyun Cho, Sung Ho Cho, and Hyun-Kyung Park. 2019. Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates. Royal Society Open Science 6, 6 (2019), 190149.Google ScholarGoogle Scholar
  125. [125] Lim Sungmook, Jang Gwang Soo, Song Wonyoung, Kim Baek-hyun, and Kim Dong Hyun. 2022. Non-contact VITAL signs monitoring of a patient lying on surgical bed using beamforming FMCW radar. Sensors 22, 21 (2022), 8167.Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Yang Zhicheng, Bocca Maurizio, Jain Vivek, and Mohapatra Prasant. 2018. Contactless breathing rate monitoring in vehicle using UWB radar. In 7th International Workshop on Real-world Embedded Wireless Systems and Networks. 1318.Google ScholarGoogle Scholar
  127. [127] Li Zhi, Jin Tian, Dai Yongpeng, and Song Yongkun. 2021. Through-wall multi-subject localization and vital signs monitoring using UWB MIMO imaging radar. Rem. Sens. 13, 15 (2021), 2905.Google ScholarGoogle ScholarCross RefCross Ref
  128. [128] Zhang Dongheng, Hu Yang, and Chen Yan. 2020. MTrack: Tracking multiperson moving trajectories and vital signs with radio signals. IEEE Internet Things J. 8, 5 (2020), 39043914.Google ScholarGoogle ScholarCross RefCross Ref
  129. [129] Zhang Xinyue, Yang Xiuzhu, Ding Yi, Wang Yili, Zhou Jialin, and Zhang Lin. 2021. Contactless simultaneous breathing and heart rate detections in physical activity using IR-UWB radars. Sensors 21, 16 (2021), 5503.Google ScholarGoogle ScholarCross RefCross Ref
  130. [130] Yoo Sungwon, Ahmed Shahzad, Kang Sun, Hwang Duhyun, Lee Jungjun, Son Jungduck, and Cho Sung Ho. 2021. Radar recorded child vital sign public dataset and deep learning-based age group classification framework for vehicular application. Sensors 21, 7 (2021), 2412.Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Shi Kilin, Schellenberger Sven, Will Christoph, Steigleder Tobias, Michler Fabian, Fuchs Jonas, Weigel Robert, Ostgathe Christoph, and Koelpin Alexander. 2020. A dataset of radar-recorded heart sounds and vital signs including synchronised reference sensor signals. Scient. Data 7, 1 (2020), 50.Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] Wang Saiwen, Song Jie, Lien Jaime, Poupyrev Ivan, and Hilliges Otmar. 2016. Interacting with Soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In 29th Annual Symposium on User Interface Software and Technology. 851860.Google ScholarGoogle Scholar
  133. [133] Lu Na, Wu Yidan, Feng Li, and Song Jinbo. 2018. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data. IEEE J. Biomed. Health Inform. 23, 1 (2018), 314323.Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Zhao Peijun, Lu Chris Xiaoxuan, Wang Bing, Chen Changhao, Xie Linhai, Wang Mengyu, Trigoni Niki, and Markham Andrew. 2020. Heart rate sensing with a robot mounted mmWave radar. In IEEE International Conference on Robotics and Automation (ICRA’20). IEEE, 28122818.Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Shi Kilin, Steigleder Tobias, Schellenberger Sven, Michler Fabian, Malessa Anke, Lurz Fabian, Rohleder Nicolas, Ostgathe Christoph, Weigel Robert, and Koelpin Alexander. 2021. Contactless analysis of heart rate variability during cold pressor test using radar interferometry and bidirectional LSTM networks. Scient. Rep. 11, 1 (2021), 113.Google ScholarGoogle Scholar
  136. [136] Gong Jian, Zhang Xinyu, Lin Kaixin, Ren Ju, Zhang Yaoxue, and Qiu Wenxun. 2021. RF vital sign sensing under free body movement. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 5, 3 (2021), 122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. [137] Zheng Tianyue, Chen Zhe, Zhang Shujie, Cai Chao, and Luo Jun. 2021. MoRe-Fi: Motion-robust and fine-grained respiration monitoring via deep-learning UWB radar. In 19th ACM Conference on Embedded Networked Sensor Systems. 111124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. [138] Chen Zhe, Zheng Tianyue, Cai Chao, and Luo Jun. 2021. MoVi-Fi: Motion-robust vital signs waveform recovery via deep interpreted RF sensing. In 27th Annual International Conference on Mobile Computing and Networking. 392405.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. [139] Vepsäläinen Teemu, Laakso Markku, Lehto Seppo, Juutilainen Auni, Airaksinen Juhani, and Rönnemaa Tapani. 2014. Prolonged P wave duration predicts stroke mortality among type 2 diabetic patients with prevalent non-major macrovascular disease. BMC Cardiovasc. Disord. 14, 1 (2014), 17.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Non-intrusive Human Vital Sign Detection Using mmWave Sensing Technologies: A Review

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Sensor Networks
      ACM Transactions on Sensor Networks  Volume 20, Issue 1
      January 2024
      717 pages
      ISSN:1550-4859
      EISSN:1550-4867
      DOI:10.1145/3618078
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 November 2023
      • Online AM: 12 October 2023
      • Accepted: 5 October 2023
      • Revised: 25 September 2023
      • Received: 3 July 2023
      Published in tosn Volume 20, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)1,037
      • Downloads (Last 6 weeks)211

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text