skip to main content
10.1145/3614008.3614027acmotherconferencesArticle/Chapter ViewAbstractPublication PagesspmlConference Proceedingsconference-collections
research-article

A Graph Neural Network with Multiple Auxiliary Tasks for Accurate Single Cell Classification

Published:17 October 2023Publication History

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) data provide new opportunities for many research directions in the field of biology, one of which is the identification of cell types. However, traditional cell identification methods are time-consuming, uneconomical, complex, and difficult to be applied to large data sets. Here, we propose a graph neural network with multiple auxiliary tasks (MATGNN) for cell classification. First, we construct the adjacency matrix between cells based on their gene expression data, which represents the interactions between cells. Next, a complete undirected graph between cells is obtained and it is fed into the graph neural network model, which is employed to aggregate the information of node's neighborhood. Then, we improve the robustness of the proposed model through three different auxiliary tasks. Specifically, the first auxiliary task balances the information in the adjacency matrix between cells. The second one captures inherent information about the interactions between cells of same type and the third one is responsible for mining the structural information from the undirected graph between cells. Those three auxiliary tasks enable the model to deeply dig into the structural information and link information of the cell graph. Finally, we conduct extensive experiments on the gold datasets and the results indicate that our models outperform the state-of-the-art methods for single cell classification. Compared with other state-of-the-art methods, our method achieves the highest accuracy on most datasets. In particular, our method improves the classification accuracy of datasets BaronMouse, Segerstolpe and BaronHuman by 0.5%, 1.2%$ and 0.7%, respectively. We prove the effectiveness of establishing adjacency matrix between cells in cell classification. Three auxiliary tasks show that we can mine more cellular properties from existing datasets.

References

  1. Elham Azizi, Ambrose J Carr, George Plitas, Andrew E Cornish, Catherine Konopacki, Sandhya Prabhakaran, Juozas Nainys, Kenmin Wu, Vaidotas Kiseliovas, Manu Setty, Kristy Choi, Rachel M Fromme, Phuong Dao, Peter T McKenney, Ruby C Wasti, Krishna Kadaveru, Linas Mazutis , Alexander Y Rudensky, and Dana Pe'er. 2018. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 174(5):1293-1308. https://doi.org/10.1016/j.cell.2018.05.060Google ScholarGoogle ScholarCross RefCross Ref
  2. Darren A Cusanovich, Andrew J Hill, Delasa Aghamirzaie, Riza M Daza, Hannah A Pliner, Joel B Berletch, Galina N Filippova, Xingfan Huang, Lena Christiansen, William S DeWitt, Choli Lee, Samuel G Regalado, David F Read, Frank J Steemers, Christine M Disteche, Cole Trapnell, and Jay Shendure . 2018. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell, 174(5):1309-1324. https://doi.org/10.1016/j.cell.2018.06.052Google ScholarGoogle ScholarCross RefCross Ref
  3. Mauro J Muraro , Gitanjali Dharmadhikari , Dominic Grün , Nathalie Groen , Tim Dielen , Erik Jansen , Leon van Gurp , Marten A Engelse , Francoise Carlotti , Eelco J P de Koning , and Alexander van Oudenaarden. Bolles. 2016. A single-cell transcriptome atlas of the human pancreas. Cell Syst, 3(4):385-394.e3. https://doi.org/10.1016/j.cels.2016.09.002Google ScholarGoogle ScholarCross RefCross Ref
  4. Tabula Muris Consortium. 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 562(7727):367-372. https://doi.org/10.1038/s41586-018-0590-4Google ScholarGoogle ScholarCross RefCross Ref
  5. Jason D Buenrostro , M Ryan Corces , Caleb A Lareau , Beijing Wu , Alicia N Schep , Martin J Aryee , Ravindra Majeti , Howard Y Chang , and William J Greenleaf. 2018. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell, 173(6):1535-1548.e16. https://doi.org/10.1016/j.cell.2018.03.074Google ScholarGoogle ScholarCross RefCross Ref
  6. Alexandra-Chloé Villani, Rahul Satija, Gary Reynolds, Siranush Sarkizova, Karthik Shekhar, James Fletcher, Morgane Griesbeck , Andrew Butler , Shiwei Zheng , Suzan Lazo, Laura Jardine, David Dixon, Emily Stephenson, Emil Nilsson, Ida Grundberg, David McDonald, Andrew Filby, Weibo Li, Philip L De Jager, Orit Rozenblatt-Rosen, Andrew A Lane, Muzlifah Haniffa , Aviv Regev, and Nir Hacohen. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356(6335):eaah4573. https://doi.org/10.1126/science.aah4573Google ScholarGoogle ScholarCross RefCross Ref
  7. Dominic Grün, Anna Lyubimova, Lennart Kester, Kay Wiebrands, Onur Basak, Nobuo Sasaki, Hans Clevers, and Alexander van Oudenaarden. 2015. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature, 525(7568):251-5. https://doi.org/10.1038/nature14966Google ScholarGoogle ScholarCross RefCross Ref
  8. Åsa Segerstolpe, Athanasia Palasantza, Pernilla Eliasson, Eva-Marie Andersson, Anne-Christine Andréasson, Xiaoyan Sun, Simone Picelli, Alan Sabirsh, Maryam Clausen, Magnus K Bjursell, David M Smith, Maria Kasper, Carina Ämmälä, and Rickard Sandberg. 2016. Single-cell transcriptome profling of human pancreatic islets in health and type 2 diabetes, Cell Metab, 24(4):593-607. https://doi.org/10.1016/j.cmet.2016.08.020Google ScholarGoogle ScholarCross RefCross Ref
  9. George Adam, Ladislav Rampášek, Zhaleh Safikhani, Petr Smirnov, Benjamin Haibe-Kains, and Anna Goldenberg. 2020. Machine learning approaches to drug response prediction: Challenges and recent progress. npj Precision Oncologyl, 4:19. https://doi.org/10.1038/s41698-020-0122-1Google ScholarGoogle ScholarCross RefCross Ref
  10. Britt Adamson, Thomas M Norman, Marco Jost, Min Y Cho, James K Nuñez, Yuwen Chen, Jacqueline E Villalta, Luke A Gilbert, Max A Horlbeck, Marco Y Hein, Ryan A Pak, Andrew N Gray, Carol A Gross, Atray Dixit , Oren Parnas, Aviv Regev, and Jonathan S Weissman. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell, 167(7):1867-1882.e21. https://doi.org/10.1016/j.cell.2016.11.048Google ScholarGoogle ScholarCross RefCross Ref
  11. Christopher T Fincher, Omri Wurtzel, Thom de Hoog, Kellie M Kravarik, and Peter W Reddien. 2018. Cell type transcriptome atlas for the planarian Schmid tea mediterranea. Science, 360(6391):eaaq1736. https://doi.org/10.1126/science.aaq1736Google ScholarGoogle ScholarCross RefCross Ref
  12. Mireya Plass, Jordi Solana, F Alexander Wolf, Salah Ayoub, Aristotelis Misios, Petar Glažar, Benedikt Obermayer, Fabian J Theis, Christine Kocks, and Nikolaus Rajewsky. 2018. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, 360(6391):eaaq1723. https://doi.org/10.1126/science.aaq1723Google ScholarGoogle ScholarCross RefCross Ref
  13. Jose Alquicira-Hernandez, Anuja Sathe, Hanlee P Ji, Quan Nguyen, and Joseph E Powell. 2019. scPred: accurate supervised method for cell-type classifcation from single-cell RNA-seq data. Science, 20(1):264. https://doi.org/10.1186/s13059-019-1862-5Google ScholarGoogle ScholarCross RefCross Ref
  14. Katerina Boufea, Sohan Seth, and Nizar N Batada. 2020. scID Uses Discriminant Analysis to Identify Transcriptionally Equivalent Cell Types across Single-Cell RNA-Seq Data with Batch Effect. iScience, 23(3):100914. https://doi.org/10.1016/j.isci.2020.100914Google ScholarGoogle ScholarCross RefCross Ref
  15. Yuval Lieberman, Lior Rokach, and Tal Shay. 2018. CaSTLe – Classifcation of single cells by transfer learning: harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments. PLoS One, 13(10):e0205499. https://doi.org/10.1371/journal.pone.0205499Google ScholarGoogle ScholarCross RefCross Ref
  16. Dvir Aran, Agnieszka P Looney, Leqian Liu, Esther Wu, Valerie Fong, Austin Hsu, Suzanna Chak, Ram P Naikawadi, Paul J Wolters, Adam R Abate, Atul J Butte, and Mallar Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profbrotic macrophage. Nat Immunol, 20(2):163-172. https://doi.org/10.1038/s41590-018-0276-yGoogle ScholarGoogle ScholarCross RefCross Ref
  17. Vladimir Yu Kiselev, Andrew Yiu, and Martin Hemberg. 2018. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods, 15(5):359-362. https://doi.org/10.1038/nmeth.4644Google ScholarGoogle ScholarCross RefCross Ref
  18. Ze Zhang, Danni Luo, Xue Zhong, Jin Huk Choi, Yuanqing Ma, Stacy Wang, Elena Mahrt, Wei Guo, Eric W Stawiski, Zora Modrusan, Somasekar Seshagiri, Payal Kapur, Gary C Hon, James Brugarolas, and Tao Wang. 2019. SCINA: semi-supervised analysis of single cells in silico. Genes, 10:531. https://doi.org/Google ScholarGoogle ScholarCross RefCross Ref
  19. Feiyang Ma and Matteo Pellegrini. 2020. ACTINN: automated identifcation of cell types in single cell RNA sequencing. Bioinformatics, 36(2):533-538. https://doi.org/Google ScholarGoogle ScholarCross RefCross Ref
  20. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, and Chengqi Zhang, Philip S Yu. 2021. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, 32(1):4-24. https://doi.org/10.1109/TNNLS.2020.2978386Google ScholarGoogle ScholarCross RefCross Ref
  21. Tianyu Wang, Jun Bai, and Sheida Nabavi. 2021. Single-cell classification using graph convolutional networks. BMC Bioinformatics, 22(1):364. https://doi.org/Google ScholarGoogle ScholarCross RefCross Ref
  22. Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, Lars J Jensen, and Christian von Mering. 2019. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 47(D1):D607-D613. https://doi.org/10.1093/nar/gky1131Google ScholarGoogle ScholarCross RefCross Ref
  23. Yuansong Zeng, Zhuoyi Wei, Zixiang Pan, Yutong Lu, and Yuedong Yang. 2022. A Robust and Scalable Graph Neural Network for Accurate Single Cell Classification. Brief Bioinform, 23(2):bbab570. https://doi.org/10.1093/bib/bbab570Google ScholarGoogle ScholarCross RefCross Ref
  24. Krzysztof Polański, Matthew D Young, Zhichao Miao, Kerstin B Meyer, Sarah A Teichmann, and Jong-Eun Park. 2020. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics, 36(3):964-965. https://doi.org/10.1093/bioinformatics/btz625Google ScholarGoogle ScholarCross RefCross Ref
  25. Vincent Mukwaya, Stephen Mann, and Hongjing Dou. 2021. Chemical communication at the synthetic cell/living cell interface. Commun Chem, 4(1):161. https://doi.org/10.1038/s42004-021-00597-wGoogle ScholarGoogle ScholarCross RefCross Ref
  26. Vladimir P Zhdanov. 2021. Proliferation of cells with aggregation and communication. Math Biosci, 301:32-36. https://doi.org/10.1016/j.mbs.2018.01.007Google ScholarGoogle ScholarCross RefCross Ref
  27. Dallas Foster, Brian Frost-LaPlante, Collin Victor, and Juan M Restrepo 2021. Gradient sensing via cell communication. Phys Rev E, 103(2-1):022405. https://doi.org/10.1103/PhysRevE.103.022405Google ScholarGoogle ScholarCross RefCross Ref
  28. Mauricio P. Pato. 2021. Disordered Random Walks. Brazilian Journal of Physics, 51:238-243. https://doi.org/Google ScholarGoogle ScholarCross RefCross Ref
  29. R. M. Phatarfod , T. P. Speed , A. M. Walker. 2016. A note on random walks. Journal of Applied Probability, 8(1):198-201. https://doi.org/Google ScholarGoogle ScholarCross RefCross Ref
  30. Yao Wu , Yu Song, Hong Huang, Fanghua Ye, Xing Xie, and Hai Jin. 2019. Enhancing Graph Neural Networks via auxiliary training for semi-supervised node classification. Knowledge-Based Systems, 220:106884. https://doi.org/Google ScholarGoogle ScholarCross RefCross Ref
  31. Tamim Abdelaal, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J T Reinders, and Ahmed Mahfouz. 2021. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biology, 20(1):194. https://doi.org/10.1186/s13059-019-1795-zGoogle ScholarGoogle ScholarCross RefCross Ref
  32. Mohammadreza Heydarian, Thomas E. Doyle, and Reza Samavi . 2022. MLCM: Multi-Label Confusion Matrix. IEEE Access, 10:19083-19095. https://doi.org/Google ScholarGoogle Scholar
  33. Olivier Caelen. 2017. A Bayesian interpretation of the confusion matrix. Annals of Mathematics and Artificial Intelligence , 81:429-450. https://doi.org/Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kangwei Wang, Zhengwei Li, Zhu-Hong You, and Pengyong Han, Ru Nie. 2023. Adversarial dense graph convolutional networks for single-cell classification. Bioinformatics, 39(2):btad043. https://doi.org/10.1093/bioinformatics/btad043Google ScholarGoogle ScholarCross RefCross Ref
  35. Jacob C Kimmel, and David R Kelley. Semisupervised adversarial neural networks for single-cell classification. Genome Research, 31(10):1781-1793. https://doi.org/10.1101/gr.268581.120Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    SPML '23: Proceedings of the 2023 6th International Conference on Signal Processing and Machine Learning
    July 2023
    383 pages
    ISBN:9798400707575
    DOI:10.1145/3614008

    Copyright © 2023 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 17 October 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)24
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format