skip to main content
10.1145/3610548.3618241acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

A Micrograin BSDF Model for the Rendering of Porous Layers

Published:11 December 2023Publication History

ABSTRACT

We introduce a new BSDF model for the rendering of porous layers, as found on surfaces covered by dust, rust, dirt, or sprayed paint. Our approach is based on a distribution of elliptical opaque micrograins, extending the Trowbridge-Reitz (GGX) distribution [Trowbridge and Reitz 1975; Walter et al. 2007] to handle pores (i.e., spaces between micrograins). We use distance field statistics to derive the corresponding Normal Distribution Function (NDF) and Geometric Attenuation Factor (GAF), as well as a view- and light-dependent filling factor to blend between the porous and base layers. All the derived terms show excellent agreement when compared against numerical simulations.

Our approach has several advantages compared to previous work [d’Eon et al. 2023; Merillou et al. 2000; Wang et al. 2022]. First, it decouples structural and reflectance parameters, leading to an analytical single-scattering formula regardless of the choice of micrograin reflectance. Second, we show that the classical texture maps (albedo, roughness, etc) used for spatially-varying material parameters are easily retargeted to work with our model. Finally, the BRDF parameters of our model behave linearly, granting direct multi-scale rendering using classical mip mapping.

Skip Supplemental Material Section

Supplemental Material

References

  1. M. Ashikhmin, S. Premoze, and P. Shirley. 2000. A microfacet-based BRDF generator. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, New Orleans, LA, USA, July 23-28, 2000. ACM, 65–74.Google ScholarGoogle Scholar
  2. A. Atanasov, V. Koylazov, R. Dimov, and A. Wilkie. 2022. Microsurface Transformations. Computer Graphics Forum 41, 4 (2022), 105–116. https://doi.org/10.1111/cgf.14590 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14590Google ScholarGoogle ScholarCross RefCross Ref
  3. P. Barla, R. Pacanowski, and P. Vangorp. 2018. A Composite BRDF Model for Hazy Gloss. Computer Graphics Forum 37, 4 (2018), 55–66. https://doi.org/10.1111/cgf.13475 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13475Google ScholarGoogle ScholarCross RefCross Ref
  4. Benedikt Bitterli and Eugene d’Eon. 2022. A Position-Free Path Integral for Homogeneous Slabs and Multiple Scattering on Smith Microfacets. Computer Graphics Forum 41, 4 (2022), 93–104. https://doi.org/10.1111/cgf.14589 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14589Google ScholarGoogle ScholarCross RefCross Ref
  5. R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. In ACM SIGGRAPH proceedings.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Herbert A David and Haikady N Nagaraja. 2004. Order statistics. John Wiley & Sons.Google ScholarGoogle Scholar
  7. Eugene d’Eon. 2021. An analytic BRDF for materials with spherical Lambertian scatterers. Computer Graphics Forum 40, 4 (2021), 153–161. https://doi.org/10.1111/cgf.14348 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14348Google ScholarGoogle ScholarCross RefCross Ref
  8. Eugene d’Eon, Benedikt Bitterli, Andrea Weidlich, and Tizian Zeltner. 2023. Microfacet theory for non-uniform heightfields. In SIGGRAPH 2023 Conference Papers (Los Angeles, CA, USA). Association for Computing Machinery, New York, NY, USA, 10 pages. https://doi.org/10.1145/3588432.3591486Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jonathan Dupuy, Eric Heitz, and Eugene d’Eon. 2016. Additional Progress towards the Unification of Microfacet and Microflake Theories. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (Dublin, Ireland) (EGSR ’16). Eurographics Association, Goslar, DEU, 55–63.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Alejandro Conty Estevez and Christopher Kulla. 2017. Production Friendly Microfacet Sheen BRDF. ACM SIGGRAPH 2017 (2017).Google ScholarGoogle Scholar
  11. Bruce Hapke. 2012. Theory of Reflectance and Emittance Spectroscopy (2 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139025683Google ScholarGoogle ScholarCross RefCross Ref
  12. E. Heitz. 2014. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques 3, 2 (June 2014).Google ScholarGoogle Scholar
  13. Eric Heitz. 2018. Sampling the GGX Distribution of Visible Normals. Journal of Computer Graphics Techniques (JCGT) 7, 4 (30 November 2018), 1–13. http://jcgt.org/published/0007/04/01/Google ScholarGoogle Scholar
  14. Eric Heitz and Jonathan Dupuy. 2015. Implementing a Simple Anisotropic Rough Diffuse Material with Stochastic Evaluation. Technical Report.Google ScholarGoogle Scholar
  15. Eric Heitz, Johannes Hanika, Eugene d’Eon, and Carsten Dachsbacher. 2016. Multiple-Scattering Microfacet BSDFs with the Smith Model. ACM Trans. Graph. 35, 4, Article 58 (jul 2016), 14 pages. https://doi.org/10.1145/2897824.2925943Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022. Mitsuba 3 renderer. https://mitsuba-renderer.org.Google ScholarGoogle Scholar
  17. Joo Ho Lee, Adrian Jarabo, Daniel S. Jeon, Diego Gutierrez, and Min H. Kim. 2018. Practical Multiple Scattering for Rough Surfaces. ACM Trans. Graph. 37, 6, Article 275 (dec 2018), 12 pages. https://doi.org/10.1145/3272127.3275016Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Merillou, J.-M. Dischler, and D. Ghazanfarpour. 2000. A BRDF postprocess to integrate porosity on rendered surfaces. IEEE Transactions on Visualization and Computer Graphics 6, 4 (2000), 306–318. https://doi.org/10.1109/2945.895876Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016. Efficient Rendering of Heterogeneous Polydisperse Granular Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 35, 6 (Dec. 2016), 168:1–168:14. https://doi.org/10/f9cm65Google ScholarGoogle Scholar
  20. M. Oren and S. K. Nayar. 1994. Generalization of Lambert’s Reflectance Model. In ACM SIGGRAPH proceedings.Google ScholarGoogle Scholar
  21. B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation 15, 5 (September 1967), 668–671.Google ScholarGoogle ScholarCross RefCross Ref
  22. K. E. Torrance and E. M. Sparrow. 1967. Theory for Off-Specular Reflection From Roughened Surfaces*. J. Opt. Soc. Am. 57, 9 (Sep 1967), 1105–1114. https://doi.org/10.1364/JOSA.57.001105Google ScholarGoogle ScholarCross RefCross Ref
  23. T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Opt. Soc. Am. 65, 5 (May 1975), 531–536. https://doi.org/10.1364/JOSA.65.000531Google ScholarGoogle ScholarCross RefCross Ref
  24. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In Computer Graphics Forum, EGSR proceedings.Google ScholarGoogle Scholar
  25. Beibei Wang, Wenhua Jin, Miloš Hašan, and Ling-Qi Yan. 2022. SpongeCake: A Layered Microflake Surface Appearance Model. ACM Trans. Graph. 42, 1, Article 8 (sep 2022), 16 pages. https://doi.org/10.1145/3546940Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Feng Xie and Pat Hanrahan. 2018. Multiple Scattering from Distributions of Specular V-Grooves. ACM Trans. Graph. 37, 6, Article 276 (dec 2018), 14 pages. https://doi.org/10.1145/3272127.3275078Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tizian Zeltner, Brent Burley, and Matt Jen-Yuan Chiang. 2022. Practical Multiple-Scattering Sheen Using Linearly Transformed Cosines. In ACM SIGGRAPH 2022 Talks (Vancouver, BC, Canada) (SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article 7, 2 pages. https://doi.org/10.1145/3532836.3536240Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Micrograin BSDF Model for the Rendering of Porous Layers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SA '23: SIGGRAPH Asia 2023 Conference Papers
      December 2023
      1113 pages
      ISBN:9798400703157
      DOI:10.1145/3610548

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 December 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate178of869submissions,20%
    • Article Metrics

      • Downloads (Last 12 months)90
      • Downloads (Last 6 weeks)19

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format