skip to main content
10.1145/3610548.3618225acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article
Open Access

Neural Collision Fields for Triangle Primitives

Published:11 December 2023Publication History

ABSTRACT

We present neural collision fields as an alternative to contact point sampling in physics simulations. Our approach is built on top of a novel smoothed integral formulation for the contact surface patches between two triangle meshes. By reformulating collisions as an integral, we avoid issues of sampling common to many collision-handling algorithms. Because the resulting integral is difficult to evaluate numerically, we store its solution in an integrated neural collision field — a 6D neural field in the space of triangle pair vertex coordinates. Our network generalizes well to new triangle meshes without retraining. We demonstrate the effectiveness of our method by implementing it as a constraint in a position-based dynamics framework and show that our neural formulation successfully handles collisions in practical simulations involving both volumetric and thin-shell geometries.

Skip Supplemental Material Section

Supplemental Material

Neural_Collision_Supplemental_Video.mov

mov

49.8 MB

References

  1. Thiemo Alldieck, Hongyi Xu, and Cristian Sminchisescu. 2021. imGHUM: Implicit generative models of 3d human shape and articulated pose. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5461–5470.Google ScholarGoogle ScholarCross RefCross Ref
  2. Jan Bender. 2022. Position Based Dynamics. https://github.com/InteractiveComputerGraphics/PositionBasedDynamicsGoogle ScholarGoogle Scholar
  3. Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient geometrically exact continuous collision detection. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Xinhao Cai, Eulalie Coevoet, Alec Jacobson, and Paul Kry. 2022. Active Learning Neural C-space Signed Distance Fields for Reduced Deformable Self-Collision. In Graphics Interface 2022.Google ScholarGoogle Scholar
  5. Blender Online Community. 2018. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.orgGoogle ScholarGoogle Scholar
  6. Erwin Coumans and Yunfei Bai. 2016–2021. PyBullet, a Python module for physics simulation for games, robotics and machine learning. http://pybullet.org.Google ScholarGoogle Scholar
  7. Kenny Erleben. 2018. Methodology for assessing mesh-based contact point methods. ACM Transactions on Graphics (TOG) 37, 3 (2018), 1–30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Sami Haddadin, Alessandro De Luca, and Alin Albu-Schäffer. 2017. Robot collisions: A survey on detection, isolation, and identification. IEEE Transactions on Robotics 33, 6 (2017), 1292–1312.Google ScholarGoogle ScholarCross RefCross Ref
  10. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  11. Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine body dynamics: Fast, stable & intersection-free simulation of stiff materials. arXiv preprint arXiv:2201.10022 (2022).Google ScholarGoogle Scholar
  12. Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang. 2022b. Penetration-free projective dynamics on the GPU. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lazaros Lazaridis, Maria Papatsimouli, Konstantinos-Filippos Kollias, Panagiotis Sarigiannidis, and George F Fragulis. 2021. Hitboxes: A Survey About Collision Detection in Video Games. In International Conference on Human-Computer Interaction. Springer, 314–326.Google ScholarGoogle Scholar
  14. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020), 49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ming Lin and Stefan Gottschalk. 1998. Collision detection between geometric models: A survey. In Proc. of IMA conference on mathematics of surfaces, Vol. 1. 602–608.Google ScholarGoogle Scholar
  17. Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Zach Corse. 2020. Local optimization for robust signed distance field collision. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 1 (2020), 1–17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems. University of California, Berkeley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2 (2007), 109–118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 165–174.Google ScholarGoogle ScholarCross RefCross Ref
  21. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  22. Cristian Romero, Dan Casas, Maurizio M Chiaramonte, and Miguel A Otaduy. 2022. Contact-centric deformation learning. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yulia Rubanova, Alvaro Sanchez-Gonzalez, Tobias Pfaff, and Peter Battaglia. 2021. Constraint-based graph network simulator. arXiv preprint arXiv:2112.09161 (2021).Google ScholarGoogle Scholar
  24. Michael Strecke and Joerg Stueckler. 2021. DiffSDFSim: Differentiable rigid-body dynamics with implicit shapes. In 2021 International Conference on 3D Vision (3DV). IEEE, 96–105.Google ScholarGoogle ScholarCross RefCross Ref
  25. Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zachmann, Laks Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure, Nadia Magnenat-Thalmann, Wolfgang Strasser, 2005. Collision detection for deformable objects. In Computer graphics forum, Vol. 24. Wiley Online Library, 61–81.Google ScholarGoogle Scholar
  26. Bolun Wang, Zachary Ferguson, Xin Jiang, Marco Attene, Daniele Panozzo, and Teseo Schneider. 2022. Fast and Exact Root Parity for Continuous Collision Detection. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 355–363.Google ScholarGoogle Scholar
  27. Monan Wang and Jiaqi Cao. 2021. A review of collision detection for deformable objects. Computer Animation and Virtual Worlds 32, 5 (2021), e1987.Google ScholarGoogle ScholarCross RefCross Ref
  28. Shuqi Yang, Xingzhe He, and Bo Zhu. 2020. Learning physical constraints with neural projections. Advances in Neural Information Processing Systems 33 (2020), 5178–5189.Google ScholarGoogle Scholar
  29. Ryan S. Zesch, Bethany R. Witemeyer, Ziyan Xiong, David I.W. Levin, and Shinjiro Sueda. 2022. Neural Collision Detection for Deformable Objects. arXiv preprint arXiv:2202.02309 (2022).Google ScholarGoogle Scholar
  30. Ryan S. Zesch, Bethany R. Witemeyer, Ziyan Xiong, David I.W. Levin, and Shinjiro Sueda. 2023. NBD-Tree: Neural Bounded Deformation Tree for Collision Culling of Deformable Objects. In Southwest Data Science Conference.Google ScholarGoogle Scholar

Index Terms

  1. Neural Collision Fields for Triangle Primitives

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SA '23: SIGGRAPH Asia 2023 Conference Papers
        December 2023
        1113 pages
        ISBN:9798400703157
        DOI:10.1145/3610548

        Copyright © 2023 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 December 2023

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate178of869submissions,20%
      • Article Metrics

        • Downloads (Last 12 months)648
        • Downloads (Last 6 weeks)121

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format