skip to main content
10.1145/3610396.3623267acmconferencesArticle/Chapter ViewAbstractPublication PagesmicroConference Proceedingsconference-collections
research-article

Interconnect Fabrics for Multi-Core Quantum Processors: A Context Analysis

Authors Info & Claims
Published:28 October 2023Publication History

ABSTRACT

Quantum computing has revolutionized the field of computer science with its extraordinary ability to handle classically intractable problems. To realize its potential, however, quantum computers need to scale to millions of qubits, a feat that will require addressing fascinating yet extremely challenging interconnection problems. In this paper, we provide a context analysis of the nascent quantum computing field from the perspective of communications, with the aim of encouraging the on-chip networks community to contribute and pave the way for truly scalable quantum computers in the decades to come.

References

  1. Carmen G. Almudever et al. 2017. The engineering challenges in quantum computing. In DATE Conference & Exhibition, 2017. 836--845.Google ScholarGoogle Scholar
  2. Frank Arute et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505--510.Google ScholarGoogle Scholar
  3. Srikant Bharadwaj et al. 2020. Kite: A family of heterogeneous interposer topologies enabled via accurate interconnect modeling. In Proceedings of the IEEE DAC.Google ScholarGoogle Scholar
  4. Jerry Chow et al. 2021. IBM Quantum breaks the 100-qubit processor barrier. https://research.ibm.com/blog/127-qubit-quantum-processor-eagleGoogle ScholarGoogle Scholar
  5. Juan Ignacio Cirac et al. 1995. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74 (May 1995), 4091--4094.Google ScholarGoogle ScholarCross RefCross Ref
  6. Tim Coopmans et al. 2021. Netsquid, a network simulator for quantum information using discrete events. Communications Physics 4, 1 (2021), 164.Google ScholarGoogle ScholarCross RefCross Ref
  7. Rabindra N. Das et al. 2017. Large Scale Cryogenic Integration Approach for Superconducting High-Performance Computing. In Proceedings of the IEEE ECTC. 675--683.Google ScholarGoogle Scholar
  8. Cirq Developers. 2023. Cirq. Zenodo (07 2023). https://doi.org/10.5281/zenodo.8161252Google ScholarGoogle ScholarCross RefCross Ref
  9. Jay Gambetta. 2022. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing. https://research.ibm.com/blog/ibm-quantum-roadmap-2025Google ScholarGoogle Scholar
  10. Amlan Ganguly et al. 2022. Interconnects for DNA, Quantum, In-Memory, and Optical Computing: Insights From a Panel Discussion. IEEE micro 42, 3 (2022).Google ScholarGoogle Scholar
  11. Alysson Gold et al. 2021. Entanglement Across Separate Silicon Dies in a Modular Superconducting Qubit Device. arXiv:2102.13293 [quant-ph]Google ScholarGoogle Scholar
  12. Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the ACM STOC (Philadelphia, Pennsylvania, USA). 212--219.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Salma Hesham et al. 2016. Survey on real-time networks-on-chip. IEEE Transactions on Parallel and Distributed Systems 28, 5 (2016), 1500--1517.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Atac Imamoglu et al. 1999. Quantum Information Processing Using Quantum Dot Spins and Cavity QED. Phys. Rev. Lett. 83 (Nov 1999), 4204--4207. Issue 20.Google ScholarGoogle Scholar
  15. Satoshi Imamura et al. 2022. mpiQulacs: A Distributed Quantum Computer Simulator for A64FX-based Cluster Systems. ArXiv abs/2203.16044 (2022).Google ScholarGoogle Scholar
  16. Hamza Jnane et al. 2022. Multicore quantum computing. Physical Review Applied 18, 4 (2022), 044064.Google ScholarGoogle ScholarCross RefCross Ref
  17. Vidyut Kaushal et al. 2019. Shuttling-Based Trapped-Ion Quantum Information Processing. arXiv:1912.04712 [quant-ph]Google ScholarGoogle Scholar
  18. Nader Khammassi et al. 2017. QX: A high-performance quantum computer simulation platform. In Proceedings of the DATE. 464--469.Google ScholarGoogle Scholar
  19. Nader Khammassi et al. 2020. OpenQL: A portable quantum programming framework for quantum accelerators. arXiv preprint arXiv: 2005.13283 (2020).Google ScholarGoogle Scholar
  20. Pieter Kok et al. 2007. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79 (Jan 2007), 135--174. Issue 1.Google ScholarGoogle Scholar
  21. Philip Krantz et al. 2019. A quantum engineer's guide to superconducting qubits. Applied Physics Reviews 6, 2 (jun 2019).Google ScholarGoogle Scholar
  22. Florent Lecocq et al. 2021. Control and readout of a superconducting qubit using a photonic link. Nature 591, 7851 (2021), 575--579.Google ScholarGoogle Scholar
  23. Nelson Leung et al. 2018. Deterministic Bidirectional Communication and Remote Entanglement Generation Between Superconducting Quantum Processors. arXiv:1804.02028 [quant-ph]Google ScholarGoogle Scholar
  24. Ruoyu Li et al. 2018. A crossbar network for silicon quantum dot qubits. Science Advances 4, 7 (2018), eaar3960.Google ScholarGoogle Scholar
  25. Sean Lie. 2023. Cerebras architecture deep dive: First look inside the hardware/software co-design for deep learning. IEEE Micro 43, 3 (2023), 18--30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y-Y Liu et al. 2021. Radio-frequency reflectometry in silicon-based quantum dots. Physical Review Applied 16, 1 (2021), 014057.Google ScholarGoogle ScholarCross RefCross Ref
  27. Daniel Llewellyn et al. 2020. Chip-to-chip quantum teleportation and multiphoton entanglement in silicon. Nature Physics 16, 2 (2020), 148--153.Google ScholarGoogle ScholarCross RefCross Ref
  28. Guang Hao Low et al. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (jul 2019), 163.Google ScholarGoogle Scholar
  29. M Malinowski et al. 2023. How to wire a 1000-qubit trapped ion quantum computer. arXiv preprint arXiv:2305.12773 (2023).Google ScholarGoogle Scholar
  30. Brian Marinelli et al. 2023. Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum Processor. arXiv:2303.03507 [quant-ph]Google ScholarGoogle Scholar
  31. Y Nakamura et al. 1999. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398 (04 1999), 786--788.Google ScholarGoogle Scholar
  32. National Academies of Sciences, Engineering, and Medicine. 2019. Quantum Computing: Progress and Prospects. The National Academies Press, Washington DC.Google ScholarGoogle Scholar
  33. Michael A. Nielsen et al. 2000. Quantum Computation and Quantum Information. Cambridge University Press.Google ScholarGoogle Scholar
  34. Anabel Ovide et al. 2023. Mapping quantum algorithms to multi-core quantum computing architectures. In Proceedings of the IEEE QCE.Google ScholarGoogle Scholar
  35. Sudeep Pasricha and Mahdi Nikdast. 2020. A survey of silicon photonics for energy-efficient manycore computing. IEEE Design & Test 37, 4 (2020), 60--81.Google ScholarGoogle ScholarCross RefCross Ref
  36. Stefano Pellerano et al. 2022. Cryogenic CMOS for Qubit Control and Readout. In Proceedings of the IEEE CICC.Google ScholarGoogle Scholar
  37. Alberto Peruzzo et al. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature Communications 5, 1 (jul 2014).Google ScholarGoogle Scholar
  38. Luca Petit et al. 2020. Universal quantum logic in hot silicon qubits. Nature 580, 7803 (2020), 355--359.Google ScholarGoogle ScholarCross RefCross Ref
  39. Jarryd J Pla et al. 2013. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 7445 (2013), 334--338.Google ScholarGoogle Scholar
  40. Anton Potočnik et al. 2021. Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation. 7, 1 (2021), 015004.Google ScholarGoogle Scholar
  41. John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79.Google ScholarGoogle Scholar
  42. Qiskit contributors. 2023. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2573505Google ScholarGoogle ScholarCross RefCross Ref
  43. Salonik Resch and Ulya R Karpuzcu. 2021. Benchmarking quantum computers and the impact of quantum noise. ACM Computing Surveys (CSUR) 54, 7 (2021).Google ScholarGoogle Scholar
  44. Leon Riesebos and Kenneth R Brown. 2022. Functional simulation of real-time quantum control software. In Proceedings of the IEEE QCE. 535--544.Google ScholarGoogle ScholarCross RefCross Ref
  45. Santiago Rodrigo et al. 2020. Will Quantum Computers Scale Without Inter-Chip Comms? A Structured Design Exploration to the Monolithic vs Distributed Architectures Quest. In Proceedings of the DCIS.Google ScholarGoogle Scholar
  46. Santiago Rodrigo et al. 2021. Modelling Short-Range Quantum Teleportation for Scalable Multi-Core Quantum Computing Architectures. In Proceedings of the ACM NANOCOM (Virtual Event, Italy). Article 14, 7 pages.Google ScholarGoogle Scholar
  47. Santiago Rodrigo et al. 2021. On double full-stack communication-enabled architectures for multicore quantum computers. IEEE micro 41, 5 (2021), 48--56.Google ScholarGoogle Scholar
  48. Santiago Rodrigo et al. 2022. Characterizing the spatio-temporal qubit traffic of a quantum intranet aiming at modular quantum computer architectures. In Proceedings of the ACM NANOCOM. Article 8, 7 pages.Google ScholarGoogle Scholar
  49. FJ Schupp et al. 2020. Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier. Journal of Applied Physics 127, 24 (2020).Google ScholarGoogle ScholarCross RefCross Ref
  50. Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (1997).Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kaitlin N Smith et al. 2022. Scaling superconducting quantum computers with chiplet architectures. In Proceedings of the IEEE MICRO-55. 1092--1109.Google ScholarGoogle Scholar
  52. Raghavendra Srinivas et al. 2021. High-fidelity laser-free universal control of trapped ion qubits. Nature 597, 7875 (2021), 209--213.Google ScholarGoogle Scholar
  53. Raihan Ur Rasool et al. 2023. Quantum Computing for Healthcare: A Review. Future Internet 15, 3 (2023).Google ScholarGoogle Scholar
  54. Jinchen Wang et al. 2023. THz Cryo-CMOS Backscatter Transceiver: A Contact-less 4 Kelvin-300 Kelvin Data Interface. In Proc. of ISSCC '23. IEEE, 14--16.Google ScholarGoogle Scholar
  55. Stefan Woerner et al. 2019. Quantum risk analysis. npj Quantum Information 5, 1 (2019).Google ScholarGoogle Scholar
  56. William K Wootters and Wojciech H Zurek. 1982. A single quantum cannot be cloned. Nature 299, 5886 (1982), 802--803.Google ScholarGoogle Scholar
  57. Qun-Yong Zhang, Ping Xu, and Shi-Ning Zhu. 2018. Quantum photonic network on chip. Chinese Physics B 27, 5 (2018), 054207.Google ScholarGoogle ScholarCross RefCross Ref
  58. Chao Zhou et al. 2023. Realizing all-to-all couplings among detachable quantum modules using a microwave quantum state router. npj Quantum Information 9, 1 (2023).Google ScholarGoogle Scholar

Index Terms

  1. Interconnect Fabrics for Multi-Core Quantum Processors: A Context Analysis

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            NoCArc '23: Proceedings of the 16th International Workshop on Network on Chip Architectures
            October 2023
            61 pages
            ISBN:9798400703072
            DOI:10.1145/3610396

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 28 October 2023

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            NoCArc '23 Paper Acceptance Rate5of14submissions,36%Overall Acceptance Rate46of122submissions,38%

            Upcoming Conference

            MICRO '24
          • Article Metrics

            • Downloads (Last 12 months)98
            • Downloads (Last 6 weeks)19

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader