skip to main content
10.1145/3609956.3609971acmotherconferencesArticle/Chapter ViewAbstractPublication PagessstdConference Proceedingsconference-collections
research-article

VoCC: Vortex Correlation Clustering Based on Masked Hough Transformation in Spatial Databases

Published:24 August 2023Publication History

ABSTRACT

A special focus in data mining is to identify agglomerations of data points in spatial or spatio-temporal databases. Multiple applications have been presented to make use of such clustering algorithms. However, applications exist, where not only dense areas have to be identified, but also requirements regarding the correlation of the cluster to a specific shape must be met, i.e. circles. This is the case for eddy detection in marine science, where eddies are not only specified by their density, but also their circular-shaped rotation. Traditional clustering algorithms lack the ability to take such aspects into account.

In this paper, we introduce Vortex Correlation Clustering which aims to identify those correlated groups of objects oriented along a vortex. This can be achieved by adapting the Circle Hough Transformation, already known from image analysis. The presented adaptations not only allow to cluster objects depending on their location next to each other, but also allows to take the orientation of individual objects into considerations. This allows for a more precise clustering of objects. A multi-step approach allows to analyze and aggregate cluster candidates, to also include final clusters, which do not perfectly satisfy the shape condition.

We evaluate our approach upon a real world application, to cluster particle simulations composing such shapes. Our approach outperforms comparable methods of clustering for this application both in terms of effectiveness and efficiency.

References

  1. Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, and Arthur Zimek. 2008. Global Correlation Clustering Based on the Hough Transform. Statistical Analysis and Data Mining: The ASA Data Science Journal 1, 3 (Nov. 2008), 111–127. https://doi.org/10.1002/sam.10012Google ScholarGoogle ScholarCross RefCross Ref
  2. Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. OPTICS: ordering points to identify the clustering structure. ACM SIGMOD Record 28, 2 (Jun 1999), 49–60. https://doi.org/10.1145/304181.304187Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. T.J. Atherton and D.J. Kerbyson. 1999. Size invariant circle detection. Image and Vision Computing 17, 11 (1999), 795–803. https://doi.org/10.1016/S0262-8856(98)00160-7Google ScholarGoogle ScholarCross RefCross Ref
  4. Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning. 2021. Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X. Ocean Sci. 17 (sep 2021), 1177–1211. https://doi.org/10.5194/os-17-1177-2021Google ScholarGoogle ScholarCross RefCross Ref
  5. Derya Birant and Alp Kut. 2007. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering 60, 1 (Jan 2007), 208–221. https://doi.org/10.1016/j.datak.2006.01.013Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dudley B. Chelton, Michael G. Schlax, and Roger M. Samelson. 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 2 (oct 2011), 167–216. https://doi.org/10.1016/j.pocean.2011.01.002Google ScholarGoogle ScholarCross RefCross Ref
  7. Nelson Tavares de Sousa, Carola Trahms, Peer Kröger, Matthias Renz, René Schubert, and Arne Biastoch. 2022. Tracking the Evolution of Water Flow Patterns Based on Spatio-Temporal Particle Flow Clusters. In 2022 23rd IEEE International Conference on Mobile Data Management (MDM). IEEE, Paphos, Cyprus, 246–253. https://doi.org/10.1109/MDM55031.2022.00054Google ScholarGoogle ScholarCross RefCross Ref
  8. Liang Deng, Yueqing Wang, Yang Liu, Fang Wang, Sikun Li, and Jie Liu. 2019. A CNN-based vortex identification method. Journal of Visualization 22 (2019), 65–78.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Richard O. Duda and Peter E. Hart. 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 15, 1 (jan 1972), 11–15. https://doi.org/10.1145/361237.361242Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Anass El Aouni, Hussein Yahia, Khalid Daoudi, and Khalid Minaoui. 2019. A Fourier approach to Lagrangian vortex detection. Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 9 (2019), 093106.Google ScholarGoogle ScholarCross RefCross Ref
  11. Alireza Hadjighasem, Daniel Karrasch, Hiroshi Teramoto, and George Haller. 2016. Spectral-clustering approach to Lagrangian vortex detection. Phys. Rev. E 93 (Jun 2016), 063107. Issue 6. https://doi.org/10.1103/PhysRevE.93.063107Google ScholarGoogle ScholarCross RefCross Ref
  12. Paul VC Hough. 1962. Method and means for recognizing complex patterns. US Patent 3,069,654.Google ScholarGoogle Scholar
  13. Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal of Classification 2, 1 (Dec 1985), 193–218. https://doi.org/10.1007/BF01908075Google ScholarGoogle ScholarCross RefCross Ref
  14. Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. 2011. Density-based clustering. Wiley interdisciplinary reviews: data mining and knowledge discovery 1, 3 (2011), 231–240.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. 2009. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data 3, 1 (Mar 2009), 1–58. https://doi.org/10.1145/1497577.1497578Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Redouane Lguensat, Miao Sun, Ronan Fablet, Pierre Tandeo, Evan Mason, and Ge Chen. 2018. EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Valencia, Spain, 1764–1767. https://doi.org/10.1109/IGARSS.2018.8518411Google ScholarGoogle ScholarCross RefCross Ref
  17. Priyanka Mukhopadhyay and Bidyut B. Chaudhuri. 2015. A survey of Hough Transform. Pattern Recognition 48, 3 (Mar 2015), 993–1010. https://doi.org/10.1016/j.patcog.2014.08.027Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Pegliasco, A. Delepoulle, E. Mason, R. Morrow, Y. Faugère, and G. Dibarboure. 2022. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data 14, 3 (2022), 1087–1107. https://doi.org/10.5194/essd-14-1087-2022Google ScholarGoogle ScholarCross RefCross Ref
  19. Givanna H. Putri, Mark N. Read, Irena Koprinska, Deeksha Singh, Uwe Röhm, Thomas M. Ashhurst, and Nicholas J.C. King. 2019. ChronoClust: Density-based clustering and cluster tracking in high-dimensional time-series data. Knowledge-Based Systems 174 (jun 2019), 9–26. https://doi.org/10.1016/j.knosys.2019.02.018Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Saif Ur Rehman, Sohail Asghar, Simon Fong, and S. Sarasvady. 2014. DBSCAN: Past, present and future. In The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014). IEEE, Bangalore, India, 232–238. https://doi.org/10.1109/ICADIWT.2014.6814687Google ScholarGoogle ScholarCross RefCross Ref
  21. Jan K. Rieck, Claus W. Böning, and Klaus Getzlaff. 2019. The nature of eddy kinetic energy in the labrador sea: Different types of mesoscale eddies, their temporal variability, and impact on deep convection. J. Phys. Oceanogr. 49, 8 (aug 2019), 2075–2094. https://doi.org/10.1175/JPO-D-18-0243.1Google ScholarGoogle ScholarCross RefCross Ref
  22. Siren Rühs, Christina Schmidt, René Schubert, Tobias G. Schulzki, Franziska U. Schwarzkopf, Dewi Le Bars, and Arne Biastoch. 2022. Robust estimates for the decadal evolution of Agulhas leakage from the 1960s to the 2010s. Communications Earth & Environment 2022 3:1 3 (12 2022), 1–12. Issue 1. https://doi.org/10.1038/s43247-022-00643-yGoogle ScholarGoogle ScholarCross RefCross Ref
  23. René Schubert, Jonathan Gula, and Arne Biastoch. 2021. Submesoscale flows impact Agulhas leakage in ocean simulations. Commun. Earth Environ. 2021 21 2, 1 (sep 2021), 1–8. https://doi.org/10.1038/s43247-021-00271-yGoogle ScholarGoogle ScholarCross RefCross Ref
  24. A.M Treguier, O Boebel, B Barnier, and G Madec. 2003. Agulhas eddy fluxes in a 1/6° Atlantic model. Deep Sea Research Part II: Topical Studies in Oceanography 50, 1 (2003), 251–280. https://doi.org/10.1016/S0967-0645(02)00396-X Inter-ocean exchange around southern Africa.Google ScholarGoogle ScholarCross RefCross Ref
  25. Erik van Sebille, Stephen M. Griffies, Ryan Abernathey, Thomas P. Adams, Pavel Berloff, Arne Biastoch, Bruno Blanke, Eric P. Chassignet, Yu Cheng, Colin J. Cotter, Eric Deleersnijder, Kristofer Döös, Henri F. Drake, Sybren Drijfhout, Stefan F. Gary, Arnold W. Heemink, Joakim Kjellsson, Inga Monika Koszalka, Michael Lange, Camille Lique, Graeme A. MacGilchrist, Robert Marsh, C. Gabriela Mayorga Adame, Ronan McAdam, Francesco Nencioli, Claire B. Paris, Matthew D. Piggott, Jeff A. Polton, Siren Rühs, Syed H.A.M. Shah, Matthew D. Thomas, Jinbo Wang, Phillip J. Wolfram, Laure Zanna, and Jan D. Zika. 2018. Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling 121 (2018), 49–75. https://doi.org/10.1016/j.ocemod.2017.11.008Google ScholarGoogle ScholarCross RefCross Ref
  26. Dongkuan Xu and Yingjie Tian. 2015. A comprehensive survey of clustering algorithms. Annals of Data Science 2 (2015), 165–193.Google ScholarGoogle ScholarCross RefCross Ref
  27. Xin Yao, Di Zhu, Yong Gao, Lun Wu, Pengcheng Zhang, and Yu Liu. 2018. A Stepwise Spatio-Temporal Flow Clustering Method for Discovering Mobility Trends. IEEE Access 6 (2018), 44666–44675. https://doi.org/10.1109/ACCESS.2018.2864662Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. VoCC: Vortex Correlation Clustering Based on Masked Hough Transformation in Spatial Databases

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        SSTD '23: Proceedings of the 18th International Symposium on Spatial and Temporal Data
        August 2023
        204 pages
        ISBN:9798400708992
        DOI:10.1145/3609956

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 August 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited
      • Article Metrics

        • Downloads (Last 12 months)43
        • Downloads (Last 6 weeks)7

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format