skip to main content
10.1145/3608251.3608277acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccmsConference Proceedingsconference-collections
research-article

Computer Simulation of Nonlinear Mixed-Effect Models with Ordinary Differential Equations for Genetic Regulation

Published:17 August 2023Publication History

ABSTRACT

Nonlinear mixed-effect model is a powerful tool to analyze complex data that have both within-subject and between-subject variabilities. Although a variety of studies have been conducted to infer parameter distributions under the assumption of parameter independence, it is not clear what are the influence of parameter correlation on the system dynamics. In this work we provide computer simulations of nonlinear mixed-effect model with ordinary differential equations. Using a gene network model as the test problem, we examine the influence of parameter correlation on the system dynamics of nonlinear mixed-effect model with normal or nonnormal random effects. Computer simulations show that the increase of positive correlation will elevate the difference between simulations with and without parameter correlation for both normal and gamma random effects. In addition, the increase of negative correlation will enhance the difference between simulations with and without parameter correlation for gamma random effects. However, the increase of negative correlation will decrease the difference between simulations with and without parameter correlation for the normal random effects. Simulation results will provide insights for the inference of parameter distributions under the assumption of parameter correlation.

References

  1. Jeffrey A Farrell, Yiqun Wang, Samantha J. Riesenfeld, Karthik Shekhar, Aviv Regev, and Alexander F. Schier. 2018. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360(6392): eaar3131. DOI: 10.1126/science.aar3131Google ScholarGoogle ScholarCross RefCross Ref
  2. Jun Ding, Nadav Sharon, and Ziv Bar-Joseph. 2022. Temporal modelling using single-cell transcriptomics. Nature Reviews Genetics 23(6): 355-368. https://doi.org/10.1038/s41576-021-00444-7Google ScholarGoogle ScholarCross RefCross Ref
  3. Andrew E Teschendorff, and Andrew P. Feinberg. 2021. Statistical mechanics meets single-cell biology. Nature Reviews Genetics 22(7): 459-476.  https://doi.org/10.1038/s41576-021-00341-zGoogle ScholarGoogle ScholarCross RefCross Ref
  4. David Lähnemann, Johannes Köster, Ewa Szczurek, Davis J. McCarthy, Stephanie C. Hicks, Mark D. Robinson, Catalina A. Vallejos 2020. Eleven grand challenges in single-cell data science. Genome biology 21(1): 1-35. https://doi.org/10.1186/s13059-020-1926-6.Google ScholarGoogle ScholarCross RefCross Ref
  5. Aimin Chen, Tianshou Zhou, and Tianhai Tian. 2022. Integrated Pipelines for Inferring Gene Regulatory Networks from Single-Cell Data. Current Bioinformatics 17(7): 559-564. https://doi.org/10.2174/1574893617666220511234247Google ScholarGoogle ScholarCross RefCross Ref
  6. Mary J. Lindstrom, and Douglas M. Bates. 1990. Nonlinear mixed effects models for repeated measures data. Biometrics 46(3): 673-687. https://doi.org/10.2307/2532087Google ScholarGoogle ScholarCross RefCross Ref
  7. Marie Davidian, and David M. Giltinan. 2003. Nonlinear models for repeated measurement data: an overview and update. Journal of agricultural, biological, and environmental statistics. 8: 387-419. https://doi.org/10.1198/1085711032697.Google ScholarGoogle ScholarCross RefCross Ref
  8. Se Yoon Lee. 2022. Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications." Mathematics 10(6): 898. https://doi.org/10.3390/math10060898Google ScholarGoogle ScholarCross RefCross Ref
  9. John C Boik, Robert A. Newman, and Robert J. Boik. 2008. Quantifying synergism/antagonism using nonlinear mixed‐effects modeling: A simulation study. Statistics in medicine. 27(7): 1040-1061.Google ScholarGoogle Scholar
  10. James T. Thorson, and Coilin Minto. 2015. Mixed effects: a unifying framework for statistical modelling in fisheries biology." ICES Journal of Marine Science 72(5): 1245-1256. https://doi.org/10.1093/icesjms/fsu213Google ScholarGoogle ScholarCross RefCross Ref
  11. Martin Berglund, Mikael Sunnåker, Martin Adiels, Mats Jirstrand, and Bernt Wennberg. 2012. Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations. Mathematical medicine and biology: a journal of the IMA. 29(4): 361-384. https://doi.org/10.1093/imammb/dqr021Google ScholarGoogle ScholarCross RefCross Ref
  12. Reza Drikvandi. 2017. Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution. Journal of pharmacokinetics and pharmacodynamics 44(3): 223-232. https://doi.org/10.1007/s10928-017-9510-8Google ScholarGoogle ScholarCross RefCross Ref
  13. Robert J Bauer. 2019. NONMEM tutorial part I: description of commands and options, with simple examples of population analysis. CPT: pharmacometrics & systems pharmacology 8(8): 525-537.Google ScholarGoogle Scholar
  14. Markus Karlsson, David LI Janzén, Lucia Durrieu, Alejandro Colman-Lerner, Maria C. Kjellsson, and Gunnar Cedersund. 2015. Nonlinear mixed-effects modelling for single cell estimation: when, why, and how to use it. BMC systems biology 9, no. 1 (2015): 1-15. https://doi.org/10.1186/s12918-015-0203-xGoogle ScholarGoogle ScholarCross RefCross Ref
  15. Sebastian Persson, Niek Welkenhuysen, Sviatlana Shashkova, Samuel Wiqvist, Patrick Reith, Gregor W. Schmidt, Umberto Picchini, and Marija Cvijovic. 2022. Scalable and flexible inference framework for stochastic dynamic single-cell models. PLoS Computational Biology 18(5): e1010082. https://doi.org/10.1371/journal.pcbi.1010082Google ScholarGoogle ScholarCross RefCross Ref
  16. Estelle Kuhn, and Marc Lavielle. 2005. Maximum likelihood estimation in nonlinear mixed effects models. Computational statistics & data analysis 49(4): 1020-1038. https://doi.org/10.1016/j.csda.2004.07.002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. José Clelto Barros Gomes, Reiko Aoki, Victor Hugo Lachos, Gilberto Alvarenga Paula, and Cibele Maria Russo. 2022. Fast inference for robust nonlinear mixed-effects models." Journal of Applied Statistics. 1-24. https://doi.org/10.1080/02664763.2022.2034141.Google ScholarGoogle ScholarCross RefCross Ref
  18. Victor H Lachos, Luis M. Castro, and Dipak K. Dey. 2013. Bayesian inference in nonlinear mixed-effects models using normal independent distributions." Computational Statistics & Data Analysis 64: 237-252. https://doi.org/10.1016/j.csda.2013.02.011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dipak K Dey, Ming-Hui Chen, and Hong Chang. 1997. Bayesian approach for nonlinear random effects models." Biometrics: .  53(4): 1239-1252. https://doi.org/10.2307/2533493Google ScholarGoogle ScholarCross RefCross Ref
  20. Umberto Picchini. 2014. Inference for SDE models via approximate Bayesian computation. Journal of Computational and Graphical Statistics. 23(4): 1080-1100. https://doi.org/10.1080/10618600.2013.866048Google ScholarGoogle ScholarCross RefCross Ref
  21. Thomas Krumpolc, D. W. Trahan, D. A. Hickman, and L. T. Biegler. 2022. Kinetic parameter estimation with nonlinear mixed-effects models." Chemical Engineering Journal. 444: 136319. https://doi.org/10.1016/j.cej.2022.136319Google ScholarGoogle ScholarCross RefCross Ref
  22. Kerrie P Nelson, Stuart R. Lipsitz, Garrett M. Fitzmaurice, Joseph Ibrahim, Michael Parzen, and Robert Strawderman. 2006. Use of the probability integral transformation to fit nonlinear mixed-effects models with nonnormal random effects." Journal of Computational and Graphical Statistics. 15(1): 39-57. https://doi.org/10.1198/106186006X96854Google ScholarGoogle ScholarCross RefCross Ref
  23. Hao Chen, Lanshan Han, and Alvin Lim. 2022. Estimating linear mixed effects models with truncated normally distributed random effects." Communications in Statistics-Simulation and Computation. 1-21. https://doi.org/10.1080/03610918.2022.2066696Google ScholarGoogle ScholarCross RefCross Ref
  24. Fernanda L Schumacher, Dipak K. Dey, and Victor H. Lachos. 2021. Approximate inferences for nonlinear mixed effects models with scale mixtures of skew-normal distributions." Journal of Statistical Theory and Practice 15(3): 60. https://doi.org/10.1007/s42519-021-00172-5Google ScholarGoogle ScholarCross RefCross Ref
  25. Weng, Lee, Hongyue Dai, Yihui Zhan, Yudong He, Sergey B. Stepaniants, and Douglas E. Bassett. "Rosetta error model for gene expression analysis." Bioinformatics 22, no. 9 (2006): 1111-1121. https://doi.org/10.1093/bioinformatics/btl045Google ScholarGoogle ScholarCross RefCross Ref
  26. Richard R Stein, Debora S. Marks, and Chris Sander. 2015. Inferring pairwise interactions from biological data using maximum-entropy probability models." PLoS computational biology. 11(7): e1004182. https://doi.org/10.1371/journal.pcbi.1004182Google ScholarGoogle ScholarCross RefCross Ref
  27. Zhimin Deng, Xinan Zhang, and Tianhai Tian. 2018. Inference of model parameters using particle filter algorithm and Copula distributions. IEEE/ACM transactions on computational biology and bioinformatics 17(4): 1231-1240. https://doi.org/10.1109/TCBB.2018.2880974Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computer Simulation of Nonlinear Mixed-Effect Models with Ordinary Differential Equations for Genetic Regulation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            ICCMS '23: Proceedings of the 2023 15th International Conference on Computer Modeling and Simulation
            June 2023
            293 pages
            ISBN:9798400707919
            DOI:10.1145/3608251

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 17 August 2023

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited
          • Article Metrics

            • Downloads (Last 12 months)24
            • Downloads (Last 6 weeks)1

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format