skip to main content
10.1145/3606464.3606487acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Open Access

Enabling Multi-hop ISP-Hypergiant Collaboration

Published:22 July 2023Publication History

ABSTRACT

Today, there is an increasing number of peering agreements between Hypergiants and networks that benefit millions of end-user. However, the majority of Autonomous Systems do not currently enjoy the benefit of interconnecting directly with Hypergiants to optimally select the path for delivering Hypergiant traffic to their users.

In this paper, we develop and evaluate an architecture that can help this long tail of networks. With our proposed architecture, a network establishes an out-of-band communication channel with Hypergiants that can be two or more AS hops away and, optionally, with the transit provider. This channel enables the exchange of network information to better assign requests of end-users to appropriate Hypergiant servers. Our analysis using operational data shows that our architecture can optimize, on average, 15% of Hypergiants' traffic and 11% of the overall traffic of networks that do not interconnect with Hypergiants. The gains are even higher during peak hours when available capacity can be scarce, up to 46% for some Hypergiants.

References

  1. R. Al-Dalky, M. Rabinovich, and K. Schomp. 2019. A Look at the ECS Behavior of DNS Resolvers. In ACM IMC.Google ScholarGoogle Scholar
  2. R. Alimi, R. Penno, and Y. Yang. 2011. ALTO Protocol. IETF RFC 7285. (2011).Google ScholarGoogle Scholar
  3. T. Arnold, J. He, W. Jiang, M. Calder, I. Cunha, V. Giotsas, and E. Katz-Bassett. 2020. Cloud Provider Connectivity in the Flat Internet. In ACM IMC.Google ScholarGoogle Scholar
  4. T. Böttger, F. Cuadrado, and S. Uhlig. 2018. Looking for Hypergiants in PeeringDB. ACM CCR 48, 3 (2018).Google ScholarGoogle Scholar
  5. M. Calder, X. Fan, and L. Zhu. 2019. A Cloud Provider's View of EDNS Client-Subnet Adoption. In Network Traffic Measurement and Analysis Conference (TMA).Google ScholarGoogle Scholar
  6. I. Castro, J. C. Cardona, S. Gorinsky, and P. Francois. 2014. Remote Peering: More Peering without Internet Flattening. (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Chatzis, G. Smaragdakis, J. Boettger, T. Krenc, and A. Feldmann. 2013. On the benefits of using a large IXP as an Internet vantage point. In ACM IMC.Google ScholarGoogle Scholar
  8. Cloudflare. 2022. Project Myriagon: Cloudflare Passes 10,000 Connected Networks. https://blog.cloudflare.com/10000-networks-and-beyond/. (2022).Google ScholarGoogle Scholar
  9. A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, and G. Smaragdakis. 2021. A Year in Lockdown: How the Waves of COVID-19 Impact Internet Traffic. Communications of the ACM 64, 7 (July 2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Gigis, M. Calder, L. Manassakis, G. Nomikos, V. Kotronis, X. Dimitropoulos, E. Katz-Bassett, and G. Smaragdakis. 2021. Seven Years in the Life of Hypergiants' Off-Nets. In Proc. ACM SIGCOMM.Google ScholarGoogle Scholar
  11. V. Giotsas, G. Nomikos, V. Kotronis, P. Sermpezis, P. Gigis, L. Manassakis, C. Dietzel, S. Konstantaras, and X. Dimitropoulos. 2021. O Peer, Where Art Thou? Uncovering Remote Peering Interconnections at IXPs. IEEE/ACM Transactions on Networking 29, 1 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. U. Goel, M. P. Wittie, and M. Steiner. 2015. Faster Web through Client-Assisted CDN Server Selection. In 24th International Conference on Computer Communication and Networks (ICCCN).Google ScholarGoogle Scholar
  13. Google. 2022. Google Peering Technical Requirements. (2022). https://peering.google.com/#/options/peeringGoogle ScholarGoogle Scholar
  14. A. Kountouras, P. Kintis, A. Avgetidis, T. Papastergiou, C. Lever, M. Polychronakis, and M. Antonakakis. 2021. Understanding the Growth and Security Considerations of ECS. In NDSS.Google ScholarGoogle Scholar
  15. M. Kwon, Z. Dou, W. Heinzelman, T. Soyata, H. Ba, and J. Shi. 2014. Use of Network Latency Profiling and Redundancy for Cloud Server Selection. In IEEE 7th International Conference on Cloud Computing.Google ScholarGoogle Scholar
  16. C. Labovitz, S. Lekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian. 2010. Internet Inter-Domain Traffic. In Proc. ACM SIGCOMM.Google ScholarGoogle Scholar
  17. G. Moura C. M., S. Castro, W. Hardaker, M. Wullink, and C. Hesselman. 2020. Clouding up the Internet: how centralized is DNS traffic becoming?. In ACM IMC.Google ScholarGoogle Scholar
  18. E. Pujol, I. Poese, J. Zerwas, G. Smaragdakis, and A. Feldmann. 2019. Steering Hyper-Giants' Traffic at Scale. In Proc. ACM CoNEXT.Google ScholarGoogle Scholar
  19. P. Richter, G. Smaragdakis, A. Feldmann, N. Chatzis, J. Boettger, and W. Willinger. 2014. Peering at Peerings: On the Role of IXP Route Servers. In ACM IMC.Google ScholarGoogle Scholar
  20. B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. 2017. Engineering Egress with Edge Fabric: Steering Oceans of Content to the World. In Proc. ACM SIGCOMM 2017. 418--431.Google ScholarGoogle Scholar
  21. K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. 2013. On Measuring the Client-Side DNS Infrastructure. In ACM IMC.Google ScholarGoogle Scholar
  22. Y. Shavitt and N. Zilberman. 2011. A Geolocation Databases Study. (2011).Google ScholarGoogle Scholar
  23. F. Streibelt, J. Boettger, N. Chatzis, G. Smaragdakis, and A. Feldmann. 2013. Exploring EDNS-Client-Subnet Adopters in your Free Time. In ACM IMC 2013. 305--312.Google ScholarGoogle Scholar
  24. M. Trevisan, D. Giordano, I. Drago, M. M. Munafo, and M. Mellia. 2018. Five Years at the Edge: Watching Internet from the ISP Network. In Proc. ACM CoNEXT.Google ScholarGoogle Scholar
  25. H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz. 2008. P4P: Provider Portal for Applications. In Proc. ACM SIGCOMM.Google ScholarGoogle Scholar
  26. K-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and A. Vahdat. 2017. Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering. In Proc. ACM SIGCOMM 2017. 432--445.Google ScholarGoogle Scholar

Index Terms

  1. Enabling Multi-hop ISP-Hypergiant Collaboration

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ANRW '23: Proceedings of the Applied Networking Research Workshop
      July 2023
      62 pages
      ISBN:9798400702747
      DOI:10.1145/3606464

      Copyright © 2023 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2023

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate34of58submissions,59%
    • Article Metrics

      • Downloads (Last 12 months)117
      • Downloads (Last 6 weeks)29

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader