skip to main content
10.1145/3604915.3608828acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
short-paper

M3REC: A Meta-based Multi-scenario Multi-task Recommendation Framework

Published:14 September 2023Publication History

ABSTRACT

Users in recommender systems exhibit multi-behavior in multiple business scenarios on real-world e-commerce platforms. A crucial challenge in such systems is to make recommendations for each business scenario at the same time. On top of this, multiple predictions (e.g., Click Through Rate and Conversion Rate) need to be made simultaneously in order to improve the platform revenue. Research focus on making recommendations for several business scenarios is in the field of Multi-Scenario Recommendation (MSR), and Multi-Task Recommendation (MTR) mainly attempts to solve the possible problems in collaboratively executing different recommendation tasks. However, existing researchers have paid attention to either MSR or MTR, ignoring the integration of MSR and MTR that faces the issue of conflict between scenarios and tasks. To address the above issue, we propose a Meta-based Multi-scenario Multi-task RECommendation framework (M3REC) to serve multiple tasks in multiple business scenarios by a unified model. However, integrating MSR and MTR in a proper manner is non-trivial due to: 1) Unified representation problem: Users’ and items’ representation behave Non-i.i.d in different scenarios and tasks which takes inconsistency into recommendations. 2) Synchronous optimization problem: Tasks distribution varies in different scenarios, and a unified optimization method is needed to optimize multi-tasks in multi-scenarios. Thus, to unified represent users and items, we design a Meta-Item-Embedding Generator (MIEG) and a User-Preference Transformer (UPT). The MIEG module can generate initialized item embedding using item features through meta-learning technology, and the UPT module can transfer user preferences in other scenarios. Besides, the M3REC framework uses a specifically designed backbone network together with a task-specific aggregate gate to promote all tasks to achieve the purpose of optimizing multiple tasks in multiple business scenarios within one model. Experiments on two public datasets have shown that M3REC outperforms those compared MSR and MTR state-of-the-art methods.

References

  1. Weijie Bian, Kailun Wu, Lejian Ren, Qi Pi, Yujing Zhang, Can Xiao, Xiang-Rong Sheng, Yong-Nan Zhu, Zhangming Chan, Na Mou, 2022. CAN: feature co-action network for click-through rate prediction. In Proceedings of the fifteenth ACM international conference on web search and data mining. 57–65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Rich Caruana. 1998. Multitask learning. Springer.Google ScholarGoogle Scholar
  3. Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning. PMLR, 1126–1135.Google ScholarGoogle Scholar
  4. Xiaobo Hao, Yudan Liu, Ruobing Xie, Kaikai Ge, Linyao Tang, Xu Zhang, and Leyu Lin. 2021. Adversarial Feature Translation for Multi-domain Recommendation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2964–2973.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 1930–1939.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun Gai. 2018. Entire space multi-task model: An effective approach for estimating post-click conversion rate. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 1137–1140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-domain recommendation: An embedding and mapping approach.. In IJCAI, Vol. 17. 2464–2470.Google ScholarGoogle Scholar
  8. Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016. Cross-stitch networks for multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3994–4003.Google ScholarGoogle ScholarCross RefCross Ref
  9. Xiang-Rong Sheng, Liqin Zhao, Guorui Zhou, Xinyao Ding, Binding Dai, Qiang Luo, Siran Yang, Jingshan Lv, Chi Zhang, Hongbo Deng, 2021. One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 4104–4113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive layered extraction (ple): A novel multi-task learning (mtl) model for personalized recommendations. In Fourteenth ACM Conference on Recommender Systems. 269–278.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).Google ScholarGoogle Scholar
  12. Yuhao Wang, Ha Tsz Lam, Yi Wong, Ziru Liu, Xiangyu Zhao, Yichao Wang, Bo Chen, Huifeng Guo, and Ruiming Tang. 2023. Multi-Task Deep Recommender Systems: A Survey. arXiv preprint arXiv:2302.03525 (2023).Google ScholarGoogle Scholar
  13. Ruobing Xie, Zhijie Qiu, Jun Rao, Yi Liu, Bo Zhang, and Leyu Lin. 2020. Internal and Contextual Attention Network for Cold-start Multi-channel Matching in Recommendation. In IJCAI. 2732–2738.Google ScholarGoogle Scholar
  14. Yingyi Zhang, Xianneng Li, Yahe Yu, Jian Tang, Huanfang Deng, Junya Lu, Yeyin Zhang, Qiancheng Jiang, Yunsen Xian, Liqian Yu, 2023. Meta-Generator Enhanced Multi-Domain Recommendation. In Companion Proceedings of the ACM Web Conference 2023. 485–489.Google ScholarGoogle Scholar
  15. Zhao-Yu Zhang, Xiang-Rong Sheng, Yujing Zhang, Biye Jiang, Shuguang Han, Hongbo Deng, and Bo Zheng. 2022. Towards Understanding the Overfitting Phenomenon of Deep Click-Through Rate Models. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 2671–2680.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jiejie Zhao, Bowen Du, Leilei Sun, Fuzhen Zhuang, Weifeng Lv, and Hui Xiong. 2019. Multiple relational attention network for multi-task learning. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & Data Mining. 1123–1131.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. 2018. Learning tree-based deep model for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1079–1088.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu Zhang, Leyu Lin, and Qing He. 2022. Personalized transfer of user preferences for cross-domain recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. 1507–1515.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Yongchun Zhu, Ruobing Xie, Fuzhen Zhuang, Kaikai Ge, Ying Sun, Xu Zhang, Leyu Lin, and Juan Cao. 2021. Learning to warm up cold item embeddings for cold-start recommendation with meta scaling and shifting networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1167–1176.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. M3REC: A Meta-based Multi-scenario Multi-task Recommendation Framework

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      RecSys '23: Proceedings of the 17th ACM Conference on Recommender Systems
      September 2023
      1406 pages

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 September 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • short-paper
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate254of1,295submissions,20%

      Upcoming Conference

      RecSys '24
      18th ACM Conference on Recommender Systems
      October 14 - 18, 2024
      Bari , Italy
    • Article Metrics

      • Downloads (Last 12 months)244
      • Downloads (Last 6 weeks)28

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format