skip to main content
10.1145/3597066.3597114acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Using Symbolic Computation to Analyze Zero-Hopf Bifurcations of Polynomial Differential Systems

Published:24 July 2023Publication History

ABSTRACT

This paper is devoted to the study of infinitesimal limit cycles that can bifurcate from zero-Hopf equilibria of differential systems based on the averaging method. We develop an efficient symbolic program using Maple for computing the averaged functions of any order for continuous differential systems in arbitrary dimension. The program allows us to systematically analyze zero-Hopf bifurcations of polynomial differential systems using symbolic computation methods. We show that for the first-order averaging, ℓ ∈ {0, 1, …, 2n − 3} limit cycles can bifurcate from the zero-Hopf equilibrium for the general class of perturbed differential systems and up to the second-order averaging, the maximum number of limit cycles can be determined by computing the mixed volume of a polynomial system obtained from the averaged functions. A number of examples are presented to demonstrate the effectiveness of the proposed algorithmic approach.

References

  1. Valery Antonov, Diana Dolićanin, Valery G. Romanovski, and János Tóth. 2016. Invariant planes and periodic oscillations in the May–Leonard asymmetric model. MATCH Commun. Math. Comput. Chem. 76 (2016), 455–474.Google ScholarGoogle Scholar
  2. Inmaculada Baldomá and Tere M. Seara. 2006. Brakdown of heteroclinic orbits for some analytic unfoldings of the Hopf–zero singulairty. J. Nonlinear Sci. 16 (2006), 543–582.Google ScholarGoogle ScholarCross RefCross Ref
  3. Luis Barreira, Jaume Llibre, and Claudia Valls. 2018. Limit cycles bifurcating from a zero-Hopf singularity in arbitrary dimension. Nonlinear Dyn. 92 (2018), 1159–1166.Google ScholarGoogle ScholarCross RefCross Ref
  4. David N. Bernstein. 1975. The number of roots of a system of equations. Functional Anal. Appl. 9 (1975), 1–4.Google ScholarGoogle Scholar
  5. Qin S. Bi and Pei Yu. 1999. Symbolic computation of normal forms for semi-simple cases. J. Comput. Appl. Math. 102 (1999), 195–220.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. François Boulier, Mao A. Han, François Lemaire, and Valery G. Romanovski. 2015. Qualitative investigation of a gene model using computer algebra algorithms. Program. Comput. Soft. 41 (2015), 105–111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Francisco Braun and Ana C. Mereu. 2021. Zero-Hopf bifurcation in a 3D jerk system. Nonlinear Anal. RWA 59 (2021), 103245–1–8.Google ScholarGoogle ScholarCross RefCross Ref
  8. B. Buchberger. 1985. Gröbner bases: An algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory (N.K. Bose, ed.), Reidel, Dordrecht, 184–232.Google ScholarGoogle Scholar
  9. Claudio Buzzi, Jaume Llibre, and Jo ao Medrado. 2016. Hopf and zero-Hopf bifurcations in the Hindmarsh-Rose system. Nonlinear Dyn. 83 (2016), 1549–1556.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chang B. Chen, Robert M. Corless, Marc M. Maza, Pei Yu, and Yi M. Zhang. 2013. An application of regular chain theory to the study of limit cycles. Int. J. Bifur. Chaos 23 (2013), 1350154–1–21.Google ScholarGoogle ScholarCross RefCross Ref
  11. George E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proceedings of the second GI Conference on Adtomata Theory and Formal Languages (H. Barkhage, ed.), Springer, Berlin Heidelberg, 134–183.Google ScholarGoogle Scholar
  12. George E. Collins and Hoon Hong. 1991. Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12 (1991), 299–328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. David A. Cox, John Little, and Donal O’Shea. 2004. Using Algebraic Geometry. Springer, New York.Google ScholarGoogle Scholar
  14. Mohab Safey El Din. 2007. Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1 (2007), 177–207.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ioannis Z. Emiris and John F. Canny. 1995. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20 (1995), 117–149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Rodrigo D. Euzébio and Jaume Llibre. 2017. Zero-Hopf bifurcation in a Chua system. Nonlinear Anal. RWA 37 (2017), 31–40.Google ScholarGoogle ScholarCross RefCross Ref
  17. Elizabeth Gross, Sonja Petrović, and Jan Verschelde. 2013. Interfacing with PHCpack. The Journal of Software for Algebra and Geometry 5 (2013), 20–25.Google ScholarGoogle ScholarCross RefCross Ref
  18. John Guckenheimer and Philip Holmes. 1993. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York.Google ScholarGoogle Scholar
  19. Mao A. Han and Valery G. Romanovski. 2010. Estimating the number of limit cycles in polynomials systems. J. Math. Anal. Appl. 368 (2010), 491–497.Google ScholarGoogle ScholarCross RefCross Ref
  20. Mao A. Han and Pei Yu. 2012. Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles. Springer, New York.Google ScholarGoogle Scholar
  21. Hoon Hong, Richard Liska, and Stanly Steinberg. 1997. Testing stability by quantifier elimination. J. Symb. Comput. 24 (1997), 161–187.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hoon Hong, Xiao X. Tang, and Bi C. Xia. 2015. Special algorithm for stability analysis of multistable biological regulatory systems. J. Symb. Comput. 70 (2015), 112–135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Bo Huang, Wei Niu, and Dong M. Wang. 2022. Symbolic computation for the qualitative theory of differential equations. Acta Math. Sci. 42B (2022), 2478–2504.Google ScholarGoogle Scholar
  24. Bo Huang and Chee K. Yap. 2023. An algorithmic approach to small limit cycles of nonlinear differential systems: The averaging method revisited. J. Symb. Comput. 115 (2023), 492–517.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Askold G. Khovanskii. 1977. Newton polytopes and toric varieties. Functional Anal. Appl. 11 (1977), 289–298.Google ScholarGoogle ScholarCross RefCross Ref
  26. Anatoli G. Kouchnirenko. 1976. Newton polytopes and the Bézout theorem. Functional Anal. Appl. 10 (1976), 233–235.Google ScholarGoogle ScholarCross RefCross Ref
  27. Yury Kuznetsov. 2004. Elements of Applied Bifurcation Theory. Springer-Verlag, New York.Google ScholarGoogle Scholar
  28. Daniel Lazard and Fabrice Rouillier. 2007. Solving parametric polynomial systems. J. Symb. Comput. 42 (2007), 636–667.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tsung-Lin Lee and Tien-Yien Li. 2011. Mixed volume computation in solving polynomial systems. Contemp. Math. 556 (2011), 97–112.Google ScholarGoogle ScholarCross RefCross Ref
  30. Jaume Llibre and Murilo R. Cândido. 2018. Zero-Hopf bifurcations in a hyperchaotic Lorenz system II. Int. J. Nonlinear Sci. 25 (2018), 3–26.Google ScholarGoogle Scholar
  31. Jaume Llibre and Amar Makhlouf. 2016. Zero-Hopf bifurcation in the generalized Michelson system. Chaos, Solitons and Fractals 89 (2016), 228–231.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jaume Llibre and Ammar Makhlouf. 2020. Zero-Hopf periodic orbits for a Rössler differential system. Int. J. Bifurcation and Chaos. 30 (2020), 2050170–1–6.Google ScholarGoogle ScholarCross RefCross Ref
  33. Jaume Llibre, Ammar Makhlouf, and Sabrina Badi. 2009. 3-dimensional Hopf bifurcation via averaging theory of second order. Discret. Contin. Dyn. Syst. 25 (2009), 1287–1295.Google ScholarGoogle ScholarCross RefCross Ref
  34. Jaume Llibre, Richard Moeckel, and Carles Simó. 2015. Central Configurations, Periodic Orbits, and Hamiltonian Systems. Birkhäuser, Basel.Google ScholarGoogle Scholar
  35. Jaume Llibre, Douglas D. Novaes, and Marco A. Teixeira. 2014. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27 (2014), 563–583.Google ScholarGoogle ScholarCross RefCross Ref
  36. Jaume Llibre and Yu Z. Tian. 2021. The zero-Hopf bifurcations of a four-dimensional hyperchaotic system. J. Math. Phys. 62 (2021), 052703–1–9.Google ScholarGoogle ScholarCross RefCross Ref
  37. Jaume Llibre and Claudia Valls. 2011. Hopf bifurcation for some analytic differential systems in via averaging theory. Discret. Contin. Dyn. Syst. 30 (2011), 779–790.Google ScholarGoogle ScholarCross RefCross Ref
  38. Jaume Llibre and Xiang Zhang. 2009. Hopf bifurcation in higher dimensional differential systems via the averaging method. Pac. J. Math. 240 (2009), 321–341.Google ScholarGoogle ScholarCross RefCross Ref
  39. Jaume Llibre and Xiang Zhang. 2011. On the Hopf-zero bifurcation of the Michelson system. Nonlinear Anal. RWA 12 (2011), 1650–1653.Google ScholarGoogle ScholarCross RefCross Ref
  40. Adam Mahdi, Claudio Pessoa, and Jonathan D. Hauenstein. 2017. A hybrid symbolic-numerical approach to the center-focus problem. J. Symb. Comput. 82 (2017), 57–73.Google ScholarGoogle ScholarCross RefCross Ref
  41. Yiu-Kwong Man. 1993. Computing closed form solutions of first order ODEs using the Prelle–Singer procedure. J. Symb. Comput. 16 (1993), 423–443.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei Niu and Dong M. Wang. 2008. Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1 (2008), 507–539.Google ScholarGoogle ScholarCross RefCross Ref
  43. Douglas D. Novaes. 2017. An Equivalent Formulation of the Averaged Functions via Bell Polynomials. Springer, New York, 141–145.Google ScholarGoogle Scholar
  44. Ding H. Pi and Xiang Zhang. 2009. Limit cycles of differential systems via the averaging method. Canad. Appl. Math. Quart. 7 (2009), 243–269.Google ScholarGoogle Scholar
  45. Valery G. Romanovski and Douglas S. Shafer. 2009. The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston.Google ScholarGoogle Scholar
  46. Jan A. Sanders, Ferdinand Verhulst, and James Murdock. 2007. Averaging Methods in Nonlinear Dynamical Systems. Springer, New York.Google ScholarGoogle Scholar
  47. Jügren Scheurle and Jerrold Marsden. 1984. Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM. J. Math. Anal. 15 (1984), 1055–1074.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Xian B. Sun and Wen T. Huang. 2017. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. J. Symb. Comput. 79 (2017), 197–210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yun Tian and Pei Yu. 2014. An explicit recursive formula for computing the normal forms associated with semisimple cases. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2294–2308.Google ScholarGoogle ScholarCross RefCross Ref
  50. Sundarapandian Vaidyanathan. 2017. A new 3-D jerk chaotic system with two cubic nonlinearities and its adaptive backstepping control. Arch. Control Sci. 27 (2017), 409–439.Google ScholarGoogle ScholarCross RefCross Ref
  51. Dong M. Wang. 1991. Mechanical manipulation for a class of differential systems. J. Symb. Comput. 12 (1991), 233–254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Dong M. Wang. 2001. Elimination Methods. Springer-Verlag, Wien.Google ScholarGoogle Scholar
  53. Dong M. Wang and Bi C. Xia. 2005. Stability analysis of biological systems with real solution classification. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, Beijing, China, 354–361.Google ScholarGoogle Scholar
  54. Wen-Tsün Wu. 2000. Mathematics Mechanization. Science Press/Kluwer Academic, Beijing.Google ScholarGoogle Scholar
  55. Lu Yang, Xiao R. Hou, and Bi C. Xia. 2001. A complete algorithm for automated discovering of a class of inequality-type theorems. Sci. China (Ser. F) 44 (2001), 33–49.Google ScholarGoogle ScholarCross RefCross Ref
  56. Lu Yang and Bi C. Xia. 2005. Real solution classifications of parametric semi-algebraic systems. In: Algorithmic Algebra and Logic – Proceedings of the A3L 2005 (A. Dolzmann, A. Seidl, and T. Sturm, eds.), Herstellung und Verlag, Norderstedt, 281–289.Google ScholarGoogle Scholar
  57. Bing Zeng and Pei Yu. 2020. Analysis of zero-Hopf bifurcation in two Rössler systems using normal form theory. Int. J. Bifur. Chaos 30 (2020), 2030050–1–14.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Using Symbolic Computation to Analyze Zero-Hopf Bifurcations of Polynomial Differential Systems

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            ISSAC '23: Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
            July 2023
            567 pages
            ISBN:9798400700392
            DOI:10.1145/3597066

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 24 July 2023

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate395of838submissions,47%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format