skip to main content
10.1145/3597066.3597072acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Pourchet’s theorem in action: decomposing univariate nonnegative polynomials as sums of five squares

Published:24 July 2023Publication History

ABSTRACT

Pourchet proved in 1971 that every nonnegative univariate polynomial with rational coefficients is a sum of five or fewer squares. Nonetheless, there are no known algorithms for constructing such a decomposition. The sole purpose of the present paper is to present a set of algorithms that decompose a given nonnegative polynomial into a sum of six (five under some unproven conjecture or when allowing weights) squares of polynomials. Moreover, we prove that the binary complexity can be expressed polynomially in terms of classical operations of computer algebra and algorithmic number theory.

References

  1. Frédéric Besson. 2007. Fast reflexive arithmetic tactics the linear case and beyond. In International Workshop on Types for Proofs and Programs. Springer, Berlin Heidelberg, 48–62.Google ScholarGoogle ScholarCross RefCross Ref
  2. Jean-François Biasse and Claus Fieker. 2014. Subexponential class group and unit group computation in large degree number fields. LMS Journal of Computation and Mathematics 17, A (2014), 385–403.Google ScholarGoogle Scholar
  3. Jean-François Biasse and Fang Song. 2016. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms. SIAM, Arlington, Virginia, USA, 893–902.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf, Bruno Salvy, and Éric Schost. 2017. Algorithmes Efficaces en Calcul Formel. Frédéric Chyzak (auto-édit.), Palaiseau. https://hal.archives-ouvertes.fr/AECF/ 686 pages. Imprimé par CreateSpace. Aussi disponible en version électronique.Google ScholarGoogle Scholar
  5. Richard T. Bumby. 1996. Sums of four squares. In Number theory (New York, 1991–1995). Springer, New York, 1–8.Google ScholarGoogle Scholar
  6. David G. Cantor and Daniel M. Gordon. 2000. Factoring polynomials over p-adic fields. In Algorithmic number theory (Leiden, 2000). Lecture Notes in Comput. Sci., Vol. 1838. Springer, Berlin, 185–208. https://doi.org/10.1007/10722028_10Google ScholarGoogle ScholarCross RefCross Ref
  7. Sylvain Chevillard, John Harrison, Mioara Joldeş, and Ch Lauter. 2011. Efficient and accurate computation of upper bounds of approximation errors. Theoretical Computer Science 412, 16 (2011), 1523–1543.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Henri Cohen. 1993. A course in computational algebraic number theory. Vol. 8. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  9. Henri Cohen. 2000. Advanced topics in computational number theory. Graduate Texts in Mathematics, Vol. 193. Springer-Verlag, New York. xvi+578 pages. https://doi.org/10.1007/978-1-4419-8489-0 https://doi.org/10.1007/978-1-4419-8489-0.Google ScholarGoogle ScholarCross RefCross Ref
  10. C. Fieker, A. Jurk, and M. Pohst. 1997. On solving relative norm equations in algebraic number fields. Math. Comp. 66, 217 (1997), 399–410. https://doi.org/10.1090/S0025-5718-97-00761-8 https://doi.org/10.1090/S0025-5718-97-00761-8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. U. Fincke and M. Pohst. 1983. A procedure for determining algebraic integers of given norm. In Computer algebra (London, 1983). Lecture Notes in Comput. Sci., Vol. 162. Springer, Berlin, 194–202. https://doi.org/10.1007/3-540-12868-9_103 https://doi.org/10.1007/3-540-12868-9_103.Google ScholarGoogle ScholarCross RefCross Ref
  12. Dennis A. Garbanati. 1980. An algorithm for finding an algebraic number whose norm is a given rational number. J. Reine Angew. Math. 316 (1980), 1–13. https://doi.org/10.1515/crll.1980.316.1 https://doi.org/10.1515/crll.1980.316.1.Google ScholarGoogle ScholarCross RefCross Ref
  13. Alexandre Gélin. 2017. Class group computations in number fields and applications to cryptology. Ph. D. Dissertation. Université Pierre et Marie Curie-Paris VI.Google ScholarGoogle Scholar
  14. Alexandre Gélin and Antoine Joux. 2016. Reducing number field defining polynomials: an application to class group computations. LMS Journal of Computation and Mathematics 19, A (2016), 315–331. https://doi.org/10.1112/S1461157016000255Google ScholarGoogle ScholarCross RefCross Ref
  15. Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, 2017. A formal proof of the Kepler conjecture. In Forum of mathematics, Pi, Vol. 5. Cambridge University Press, UK, 1–29.Google ScholarGoogle Scholar
  16. Didier Henrion, Simone Naldi, and Mohab Safey El Din. 2019. SPECTRA–a Maple library for solving linear matrix inequalities in exact arithmetic. Optimization Methods and Software 34, 1 (2019), 62–78.Google ScholarGoogle ScholarCross RefCross Ref
  17. Teresa Krick, Bernard Mourrain, and Agnes Szanto. 2021. Univariate rational sums of squares. arXiv:2112.00490Google ScholarGoogle Scholar
  18. Tsit Yuen Lam. 2005. Introduction to quadratic forms over fields. Graduate Studies in Mathematics, Vol. 67. American Mathematical Society, Providence, RI. xxii+550 pages.Google ScholarGoogle Scholar
  19. Edmund Landau. 1906. Über die darstellung definiter funktionen durch quadrate. Math. Ann. 62, 2 (1906), 272–285.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jean B Lasserre. 2001. Global optimization with polynomials and the problem of moments. SIAM Journal on optimization 11, 3 (2001), 796–817.Google ScholarGoogle Scholar
  21. Victor Magron, Xavier Allamigeon, Stéphane Gaubert, and Benjamin Werner. 2015. Formal Proofs for Nonlinear Optimization. Journal of Formalized Reasoning 8, 1 (Jan. 2015), 1–24. https://doi.org/10.6092/issn.1972-5787/4319Google ScholarGoogle ScholarCross RefCross Ref
  22. Victor Magron, George Constantinides, and Alastair Donaldson. 2017. Certified roundoff error bounds using semidefinite programming. ACM Transactions on Mathematical Software (TOMS) 43, 4 (2017), 1–31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Victor Magron and Mohab Safey El Din. 2018. RealCertify: a Maple package for certifying non-negativity. ACM Communications in Computer Algebra 52, 2 (2018), 34–37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Victor Magron and Mohab Safey El Din. 2021. On Exact Reznick, Hilbert-Artin and Putinar’s Representations. Journal of Symbolic Computation 107 (2021), 221–250.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Victor Magron, Mohab Safey El Din, and Markus Schweighofer. 2019. Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials. Journal of Symbolic Computation 93 (2019), 200–220.Google ScholarGoogle ScholarCross RefCross Ref
  26. Victor Magron, Mohab Safey El Din, Markus Schweighofer, and Trung Hieu Vu. 2022. Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation. ACM, Limoges, France, 325–332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Victor Magron, Mohab Safey El Din, and Trung-Hieu Vu. 2022. Sum of Squares Decompositions of Polynomials over their Gradient Ideals with Rational Coefficients. arXiv:2107.11825Accepted for publication in SIAM Journal on Optimization.Google ScholarGoogle Scholar
  28. Victor Magron, Henning Seidler, and Timo De Wolff. 2019. Exact optimization via sums of nonnegative circuits and arithmetic-geometric-mean-exponentials. In Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation. ACM, Beijing, China, 291–298.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Victor Magron and Jie Wang. 2023. SONC optimization and exact nonnegativity certificates via second-order cone programming. Journal of Symbolic Computation 115 (2023), 346–370.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pablo A Parrilo. 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. California Institute of Technology, USA.Google ScholarGoogle Scholar
  31. Helfried Peyrl and Pablo A Parrilo. 2008. Computing sum of squares decompositions with rational coefficients. Theoretical Computer Science 409, 2 (2008), 269–281.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Paul Pollack and Peter Schorn. 2019. Dirichlet’s proof of the three-square theorem: an algorithmic perspective. Math. Comp. 88, 316 (2019), 1007–1019. https://doi.org/10.1090/mcom/3349 https://doi.org/10.1090/mcom/3349.Google ScholarGoogle ScholarCross RefCross Ref
  33. Paul Pollack and Enrique Treviño. 2018. Finding the four squares in Lagrange’s theorem. Integers 18A (2018), Paper No. A15, 16.Google ScholarGoogle Scholar
  34. Yves Pourchet. 1971. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques. Acta Arithmetica 19, 1 (1971), 89–104.Google ScholarGoogle ScholarCross RefCross Ref
  35. Michael O. Rabin and Jeffery O. Shallit. 1986. Randomized algorithms in number theory. Comm. Pure Appl. Math. 39, S, suppl. (1986), S239–S256. https://doi.org/10.1002/cpa.3160390713 Frontiers of the mathematical sciences: 1985 (New York, 1985).Google ScholarGoogle ScholarCross RefCross Ref
  36. A. R. Rajwade. 1993. Squares. London Mathematical Society Lecture Note Series, Vol. 171. Cambridge University Press, UK. xii+286 pages. https://doi.org/10.1017/CBO9780511566028Google ScholarGoogle ScholarCross RefCross Ref
  37. Anders Rantzer and Pablo A Parrilo. 2000. On convexity in stabilization of nonlinear systems. In Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), Vol. 3. IEEE, Syndey, Australia, 2942–2945.Google ScholarGoogle ScholarCross RefCross Ref
  38. René Schoof. 1985. Elliptic Curves Over Finite Fields and the Computation of Square Roots . Math. Comp. 44, 170 (1985), 483–494. http://www.jstor.org/stable/2007968Google ScholarGoogle Scholar
  39. Markus Schweighofer. 1999. Algorithmische beweise für nichtnegativ-und positivstellensätze. Master’s thesis, Universität Passau 136 (1999), 1–105.Google ScholarGoogle Scholar
  40. Denis Simon. 2002. Solving norm equations in relative number fields using S-units. Math. Comp. 71, 239 (2002), 1287–1305. https://doi.org/10.1090/S0025-5718-02-01309-1 https://doi.org/10.1090/S0025-5718-02-01309-1.Google ScholarGoogle ScholarCross RefCross Ref
  41. Christoph Thiel. 1994. Under the assumption of the Generalized Riemann Hypothesis verifying the class number belongs to NP  ∩  co-NP. In Algorithmic Number Theory, Leonard M. Adleman and Ming-Deh Huang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 234–247.Google ScholarGoogle Scholar
  42. Christoph Thiel. 1995. Short Proofs Using Compact Representations of Algebraic Integers. Journal of Complexity 11, 3 (1995), 310–329. https://doi.org/10.1006/jcom.1995.1014Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Stan Wagon. 1990. Editor’s Corner: The Euclidean Algorithm Strikes Again. The American Mathematical Monthly 97, 2 (1990), 125–129. http://www.jstor.org/stable/2323912Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pourchet’s theorem in action: decomposing univariate nonnegative polynomials as sums of five squares
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ISSAC '23: Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
          July 2023
          567 pages
          ISBN:9798400700392
          DOI:10.1145/3597066

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 24 July 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate395of838submissions,47%
        • Article Metrics

          • Downloads (Last 12 months)29
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format