skip to main content
research-article

Analysis of Cursive Text Recognition Systems: A Systematic Literature Review

Authors Info & Claims
Published:20 July 2023Publication History
Skip Abstract Section

Abstract

Regional and cultural diversities around the world have given birth to a large number of writing systems and scripts, which consist of varying character sets. Developing an optimal character recognition for such a varying and large character set is a challenging task. Unlimited variations in handwritten text due to mood swings, varying writing styles, changes in medium of writing, and many more puzzle the research community. To overcome this problem, researchers have proposed various techniques for the automatic recognition of cursive languages like Urdu, Pashto, and Arabic. With the passage of time, the field of text recognition matured, and the number of publications exponentially increased in the targeted field. It is very difficult to find all the techniques developed, calculate the time and resource consumptions, and understand the cost–benefit tradeoffs among these techniques. These tradeoffs resist making this technology able for practical use. To address these tradeoffs, this article systematic analysis to identify gaps in the literature and suggest new enhanced solution accordingly. A total of 153 of the most relevant articles from 2008 to 2022 are analyzed in this systematic literature review (SLR) work. This systematic review process shows (1) the list of techniques suggested for cursive text recognition purposes and its capabilities, (2) set of feature extraction techniques proposed, and (3) implementation tools used to design and simulate the empirical studies in this specialized field. We have also discussed the emerging trends and described their implications for the research community in this specialized domain. This systematic assessment will ultimately help researchers to perform an overview of the existing character/text recognition approaches, recognition capabilities, and time consumption and subsequently identify the areas that requires a significant attention in the near future.

REFERENCES

  1. [1] Ghosh T., Sen S., Obaidullah S. M., Santosh K. C., Roy K., and Pal U.. 2022. Advances in online handwritten recognition in the last decades. Comput. Sci. Rev. 46 (2022), 100515.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Majid N. and Smith E. H. B.. 2022. Character spotting and autonomous tagging: offline handwriting recognition for Bangla, Korean and other alphabetic scripts. Int. J. Doc. Anal. Recogn. 25, 4 (2022), 245263.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Khan S., Hafeez A., Ali H., Nazir S., and Hussain A.. 2020. Pioneer dataset and recognition of Handwritten Pashto characters using Convolution Neural Networks. Meas. Contr. 53, 9-10 (2020), 20412054.Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Rasheed A., Ali N., Zafar B., Shabbir A., Sajid M., and Mahmood M. T.. 2022. Handwritten Urdu characters and digits recognition using transfer learning and augmentation with AlexNet. IEEE Access 10 (2022), 102629102645.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Elkhayati M., Elkettani Y., and Mourchid M.. 2022. Segmentation of handwritten arabic graphemes using a directed convolutional neural network and mathematical morphology operations. Pattern Recogn. 122 (2022), 108288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Memon J., Sami M., Khan R. A., and Uddin M.. 2020. Handwritten optical character recognition (OCR): A comprehensive systematic literature review (SLR). IEEE Access 8 (2020), 142642142668.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Alrobah N. and Albahli S.. 2022. Arabic handwritten recognition using deep learning: A survey. Arab. J. Sci. Eng. (2022), 121.Google ScholarGoogle Scholar
  8. [8] Kitchenham B. and Charters S.. 2007. Guidelines for performing systematic literature reviews in software engineering. In Evidence-Based Software Engineering.Google ScholarGoogle Scholar
  9. [9] Abandah G. A., Jamour F. T., and Qaralleh E. A.. 2014. Recognizing handwritten Arabic words using grapheme segmentation and recurrent neural networks. Int. J. Doc. Anal. Recogn. 17 (2014), 275291.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] AbdelRaouf A., Higgins C. A., Pridmore T., and Khalil M. I.. 2016. Arabic character recognition using a Haar cascade classifier approach (HCC). Pattern Anal. Appl. 19 (2016), 411426.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Abdelaziz I., Abdou S., and Al-Barhamtoshy H.. 2016. A large vocabulary system for Arabic online handwriting recognition. Pattern Anal. Appl. 19 (2016), 11291141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] AlKhateeb J. H.. 2015. A database for Arabic handwritten character recognition. Proc. Comput. Sci. 65 (2015), 556561.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Bahashwan M. A. and Bakar S. A. A.. 2014. A database of Arabic handwritten characters. In Proceedings of the IEEE International Conference on Control System, Computing and Engineering (ICCSCE’14), 632635.Google ScholarGoogle Scholar
  14. [14] Khan S., Ali H., Ullah Z., Minallah N., Maqsood S., and Hafeez A.. 2018. KNN and ANN-based recognition of handwritten Pashto letters using zoning features. Mach. Learn. 9 (2018).Google ScholarGoogle Scholar
  15. [15] Alginahi Y. M.. 2013. A survey on Arabic character segmentation. Int. J. Doc. Anal. Recogn. 16 (2013), 105126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Al-Helali B. M. and Mahmoud S. A.. 2017. Arabic online handwriting recognition (AOHR): A survey. ACM Comput. Surv.) 50 (2017), 33.Google ScholarGoogle Scholar
  17. [17] Al-Salman A. and Alyahya H.. 2017. Arabic online handwriting recognition: A survey. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning. 51.Google ScholarGoogle Scholar
  18. [18] Daud A., Khan W., and Che D.. 2017. Urdu language processing: A survey. Artif. Intell. Re. 47 (2017), 279311.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Gagaoua M., Ghilas H., Tari A., and Cheriet M.. 2017. Distribution, Directional, structural and concavity features for historical Arabic handwritten recognition: A comparative study. In Proceedings of the International Conference on Computing for Engineering and Sciences. 7075.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Ghosh D., Dube T., and Shivaprasad A.. 2010. Script recognition—a review. IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010), 21422161.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Hussain R., Raza A., Siddiqi I., Khurshid K., and Djeddi C.. 2015. A comprehensive survey of handwritten document benchmarks: Structure, usage and evaluation. J Image Video Proc. 2015, 46 (2015). Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Kaur H. and Kumar M.. 2018. A comprehensive survey on word recognition for non-Indic and Indic scripts. Pattern Anal. Appl. 21 (2018), 897929.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Kaur S., Bawa S., and Kumar R.. 2019. A survey of mono-and multi-lingual character recognition using deep and shallow architectures: Indic and non-indic scripts. Artif. Intell. Rev. (2019), 160.Google ScholarGoogle Scholar
  24. [24] Khan S., Nazir S., Khan H. U., and Hussain A.. 2021. Pashto Characters recognition using multi-class enabled support vector machine. Comput. Mater. Contin. 67, 3 (2021), 28312844.Google ScholarGoogle Scholar
  25. [25] Naz S., Umar A. I., Shirazi S. H., Ahmed S. B., Razzak M. I., and Siddiqi I.. 2016. Segmentation techniques for recognition of Arabic-like scripts: A comprehensive survey. Educat. Inf. Technol. 21 (2016), 12251241.Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Pal U., Jayadevan R., and Sharma N.. 2012. Handwriting recognition in indian regional scripts: A survey of offline techniques. ACM Trans. As. Lang. Inf. Process. 11 (2012), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Parvez M. T. and Mahmoud S. A.. 2013. Offline Arabic handwritten text recognition: A survey. ACM Comput. Surv.) 45, 23 (2013).Google ScholarGoogle Scholar
  28. [28] Peng X., Cao H., Setlur S., Govindaraju V., and Natarajan P.. 2013. Multilingual OCR research and applications: An overview. In Proceedings of the 4th International Workshop on Multilingual OCR. 1.Google ScholarGoogle Scholar
  29. [29] Soora N. R. and Deshpande P. S.. 2018. Review of feature extraction techniques for character recognition. IETE J. Res. 64 (2018), 280295.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Tagougui N., Kherallah M., and Alimi A. M.. 2013. Online Arabic handwriting recognition: A survey. Int. J. Doc. Analy. Recogn. 16 (2013), 209226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Guellil I., Saâdane H., Azouaou F., Gueni B., and Nouvel D.. 2019. Arabic natural language processing: An overview. J. King Saud Univ.– Comput. Inf. Sci. (2019).Google ScholarGoogle Scholar
  32. [32] Khan S. and Khan H. U.. 2021. Isolated handwritten pashto characters recognition using KNN classifier. In Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET’21), 15. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Choudhary P. and Nain N.. 2016. A four-tier annotated urdu handwritten text image dataset for multidisciplinary research on urdu script. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 15 (2016), 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Shatnawi M. and Abdallah S.. 2016. Improving handwritten arabic character recognition by modeling human handwriting distortions. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 15 (2016), 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Malik M. K.. 2017. Urdu named entity recognition and classification system using artificial neural network. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 17 (2017), 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. [36] Al-Shammari E. and Lin J.. 2008. A novel Arabic lemmatization algorithm. In Proceedings of the 2nd Workshop on Analytics for Noisy Unstructured Text Data, 113118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Hannad Y., Siddiqi I., El Merabet Y., and El Youssfi El Kettani M.. 2016. Arabic writer identification system using the histogram of oriented gradients (hog) of handwritten fragments. In Proceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence. 98102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Aljarrah I., Al-Khaleel O., Mhaidat K., a. Alrefai M., Alzu'bi A., and Rabab'ah M.. 2012. Automated system for Arabic optical character recognition. In Proceedings of the 3rd International Conference on Information and Communication Systems. 5.Google ScholarGoogle Scholar
  39. [39] Narwani K., Lin H., Pirbhulal S., and Hassan M.. 2022. Towards AI-Enabled approach for urdu text recognition: A legacy for urdu image apprehension. IEEE Access (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Khan S., Khan H. U., and Nazir S.. 2021. Offline pashto characters dataset for OCR systems. Security and Communication Networks 2021 (2021), 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Siddiqui M., Siddiqi I., and Khurshid K.. 2018. Feature extraction for cursive language document images: Using discrete cosine transform, discrete wavelet transform and gabor filter. In Proceedings of the 2nd Mediterranean Conference on Pattern Recognition and Artificial Intelligence. 8487.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Chen J., Cao H., Prasad R., Bhardwaj A., and Natarajan P.. 2010. Gabor features for offline Arabic handwriting recognition. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems. 5358.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Althobaiti H., Shah K., and Lu C.. 2017. Isolated handwritten arabic character recognition using freeman chain code and tangent line. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems. 7984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Huang J., Haq I. U., Dai C., Khan S., Nazir S., and Imtiaz M.. 2021. Isolated handwritten pashto character recognition using a K-NN classification tool based on zoning and HOG feature extraction techniques. Complexity 2021 (2021), 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Panwar S., Ahamed M., and Nain N.. 2014. Ligature segmentation approach for urdu handwritten text documents. In Proceedings of the International Conference on Information and Communication Technology for Competitive Strategies. 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Lamsaf A., Aitkerroum M., Boulaknadel S., and Fakhri Y.. 2018. Lines segmentation and word extraction of Arabic handwritten text. In Proceedings of the 3rd International Conference on Smart City Applications. 54.Google ScholarGoogle Scholar
  47. [47] Chandio A. A., Asikuzzaman M., Pickering M., and Leghari M.. 2020. Cursive-text: A comprehensive dataset for end-to-end Urdu text recognition in natural scene images. Data Brief 31 (2020), 105749.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Khan S. and Nazir S.. 2021. Deep learning based pashto characters recognition: LSTM-Based Handwritten Pashto characters recognition system. Proc. Pakist. Acad. Sci.: A. Phys. Comput. Sci. 58, 3 (2021), 4958.Google ScholarGoogle Scholar
  49. [49] Sattar S. A., Haque S., and Pathan M. K.. 2008. Nastaliq optical character recognition. In Proceedings of the 46th Annual Southeast Regional Conference on XX. 329331.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Kamal U., Siddiqi I., Afzal H., and Rahman A. U.. 2016. Pashto sentiment analysis using lexical features. In Proceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence. 121124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. [51] Hadi W. E. M., Salam M. A., and Al-Widian J. A.. 2010. Performance of NB and SVM classifiers in Islamic Arabic data. In Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications. 14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Bouressace H. and Csirik J.. 2019. Printed arabic text database for automatic recognition systems. In Proceedings of the 5th International Conference on Computer and Technology Applications. 107111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. [53] Ali A. R. and Ijaz M.. 2009. Urdu text classification. In Proceedings of the 7th International Conference on Frontiers of Information Technology. 21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Lehal G. S.. 2012. Choice of recognizable units for Urdu OCR. In Proceeding of the Workshop on Document Analysis and Recognition. 7985.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Shi Z., Setlur S., and Govindaraju V.. 2012. Model based table cell detection and content extraction from degraded document images. In Proceeding of the Workshop on Document Analysis and Recognition. 6267.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Lehal G. S. and Rana A.. 2013. Recognition of nastalique urdu ligatures. In Proceedings of the 4th International Workshop on Multilingual OCR. 7.Google ScholarGoogle Scholar
  57. [57] Subramanian K., Prasad R., and Natarajan P.. 2009. Robust named entity detection using an Arabic offline handwriting recognition system. In Proceedings of the 3rd Workshop on Analytics for Noisy Unstructured Text Data. 6368.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Elleuch M., Maalej R., and Kherallah M.. 2016. A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition. Proc. Comput. Sci. 80 (2016), 17121723.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Al Abodi J. and Li X.. 2014. An effective approach to offline Arabic handwriting recognition. Comput. Electr. Engineering 40 (2014), 18831901.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. [60] Tamen Z., Drias H., and Boughaci D.. 2017. An efficient multiple classifier system for Arabic handwritten words recognition. Pattern Recogn. Lett. 93 (2017), 123132.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Potrus M. Y., Ngah U. K., and Ahmed B. S.. 2014. An evolutionary harmony search algorithm with dominant point detection for recognition-based segmentation of online Arabic text recognition. Ain Shams Eng. J. 5 (2014), 11291139.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Supriana I. and Nasution A.. 2013. Arabic character recognition system development. Proc. Technol. 11 (2013), 334341.Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Lutf M., You X., Cheung Y.-m., and Chen C. P.. 2014. Arabic font recognition based on diacritics features. Pattern Recogn. 47 (2014), 672684.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [64] Ramdan J.. Omar K., Faidzul M., and Mady A.. 2013. Arabic handwriting database for text recognition. Proc. Technol. 11 (2013), 580584.Google ScholarGoogle Scholar
  65. [65] Parvez M. T. and Mahmoud S. A.. 2013. Arabic handwriting recognition using structural and syntactic pattern attributes. Pattern Recogn. 46 (2013), 141154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Al-Tahrawi M. M. and Al-Khatib S. N.. 2015. Arabic text classification using Polynomial Networks. J. King Saud Univ. Comput. Inf. Sci. 27 (2015), 437449.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. [67] Al Hamad H. A. and Zitar R. A.. 2010. Development of an efficient neural-based segmentation technique for Arabic handwriting recognition. Pattern Recogn. 43 (2010), 27732798.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. [68] AbuZeina D. and Al-Anzi F. S.. 2018. Employing fisher discriminant analysis for Arabic text classification. Comput. Electr. Eng. 66 (2018), 474486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. [69] Zahedi M. and Eslami S.. 2011. Farsi/Arabic optical font recognition using SIFT features. Proc. Comput. Sci. 3 (2011), 10551059.Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Marie-Sainte S. L. and Alalyani N.. 2018. Firefly algorithm based feature selection for Arabic text classification. J. King Saud Univ. Comput. Inf. Sci. (2018).Google ScholarGoogle Scholar
  71. [71] Zarrouk E., BenAyed Y., and Gargouri F.. 2015. Graphical models for multi-dialect arabic isolated words recognition. Proced. Comput. Sci. 60 (2015), 508516.Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Razzak M. I., Anwar F., Husain S. A., Belaid A., and Sher M.. 2010. HMM and fuzzy logic: A hybrid approach for online Urdu script-based languages’ character recognition. Knowl.-Bas. Syst. 23 (2010), 914923.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. [73] Boufenar C., Kerboua A., and Batouche M.. 2018. Investigation on deep learning for off-line handwritten Arabic character recognition. Cogn. Syst. Res. 50 (2018), 180195.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Naz S., Umar A. I., Ahmad R., Ahmed S. B., Shirazi S. H., Siddiqi I., et al. 2016. Offline cursive Urdu-Nastaliq script recognition using multidimensional recurrent neural networks. Neurocomputing 177 (2016), 228241.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Elleuch M., Tagougui N., and Kherallah M.. 2017. Optimization of DBN using regularization methods applied for recognizing arabic handwritten script. Proc. Comput. Sci. 108 (2017), 22922297.Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Al-Aziz A. M. A., Gheith M., and Sayed A. F.. 2011. Recognition for old Arabic manuscripts using spatial gray level dependence (SGLD). Egypt. Inf. J. 12 (2011), 3743.Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Mouhcine R., Mustapha A., and Zouhir M.. 2018. Recognition of cursive Arabic handwritten text using embedded training based on HMMs. J. Electr. Syst. Inf. Technol. 5 (2018/09/01/2018), 245251.Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Al Hamad H. A., Abualigah L., Shehab M., Al-Shqeerat K. H., and Otair M.. 2022. Improved linear density technique for segmentation in Arabic handwritten text recognition. Multimedia Tools Appl. (2022), 128.Google ScholarGoogle Scholar
  79. [79] Saeed K. and Albakoor M.. 2009. Region growing based segmentation algorithm for typewritten and handwritten text recognition. Appl. Soft Comput. 9 (2009), 608617.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. [80] Younes M. and Abdellah Y.. 2015. Segmentation of Arabic handwritten text to lines. Proc. Comput. Sci. 73 (2015), 115121.Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Aouadi N., Amiri S., and Echi A. K.. 2013. Segmentation of connected components in arabic handwritten documents. Proc. Technol 10 (2013), 738746.Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] Naz S., Umar A. I., Ahmad R., Siddiqi I., Ahmed S. B., Razzak M. I., et al. 2017. Urdu Nastaliq recognition using convolutional–recursive deep learning. Neurocomputing 243 (2017), 8087.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. [83] Akram H. and Khalid S.. 2017. Using features of local densities, statistics and HMM toolkit (HTK) for offline Arabic handwriting text recognition. J. Electr. Syst. Inf. Technol. 4 (2017), 387396.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Naz S., Ahmed S. B., Ahmad R., and Razzak M. I.. 2016. Zoning features and 2DLSTM for Urdu text-line recognition. Proc. Comput. Sci. 96 (2016), 1622.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. [85] Porwal U., Shi Z., and Setlur S.. 2013. Machine learning in handwritten Arabic text recognition. In Handbook of Statistics, vol. 31, Rao C. R. and Govindaraju V. (Eds.). Elsevier, 443469.Google ScholarGoogle ScholarCross RefCross Ref
  86. [86] Fischer A., Frinken V., and Bunke H.. 2013. Hidden markov models for off-line cursive handwriting recognition. In Handbook of Statistics, vol. 31, Rao C. R. and Govindaraju V. (Eds.). Elsevier, 421442.Google ScholarGoogle Scholar
  87. [87] Cao H. and Natarajan P.. 2014. Machine-printed character recognition. In Handbook of Document Image Processing and Recognition, D. Doermann and K. Tombre (Eds.). Springer, London, 331358.Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Atlam E. S., Morita K., Fuketa M., and Aoe J. I.. 2011. A new approach for Arabic text classification using Arabic field—Association terms. J. Am. Soc. Inf. Sci. Technol. 62 (2011), 22662276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. [89] ElAdel A., Zaied M., and Amar C. Ben. 2019. Trained convolutional neural network based on selected beta filters for Arabic letter recognition. Data Min. Knowl. Discov. 9 (2019), e1250.Google ScholarGoogle Scholar
  90. [90] Essa N., El-Daydamony E., and Mohamed A. A.. 2018. Enhanced technique for Arabic handwriting recognition using deep belief network and a morphological algorithm for solving ligature segmentation. ETRI J. 40 (2018), 774787.Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Khan W., Daud A., Alotaibi F., Aljohani N., and Arafat S.. 2019. Deep recurrent neural networks with word embeddings for Urdu named entity recognition. ETRI J. (2019).Google ScholarGoogle Scholar
  92. [92] Shaalan K. and Raza H.. 2009. NERA: Named entity recognition for Arabic. J. Am. Soc. Inf. Sci. Technol. 60 (2009), 16521663.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] Hansen G. F.. 2010. Word recognition in Arabic as a foreign language. Mod. Lang. J. 94 (2010), 567–581.Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Samir B. and Aoued B.. 2018. Features extraction and on-line recognition of isolated arabic characters. In Intelligent Natural Language Processing: Trends and Applications. Springer, Berlin, 481500.Google ScholarGoogle ScholarCross RefCross Ref
  95. [95] Ahmad I., Wang X., hao Mao Y., Liu G., Ahmad H., and Ullah R.. 2018. Ligature based Urdu Nastaleeq sentence recognition using gated bidirectional long short term memory. Clust. Comput. 21 (2018), 703714.Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Ahmed S. B., Naz S., Razzak M. I., Rashid S. F., Afzal M. Z., and Breuel T. M.. 2016. Evaluation of cursive and non-cursive scripts using recurrent neural networks. Neural Comput. App. 27 (2016), 603613.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. [97] Ahmed S. B., Naz S., Swati S., and Razzak M. I.. 2019. Handwritten Urdu character recognition using one-dimensional BLSTM classifier. Neural Comput. Appl. 31 (2019), 11431151.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. [98] Boufenar C., Batouche M., and Schoenauer M.. 2018. An artificial immune system for offline isolated handwritten arabic character recognition. Evolv. Syst. 9 (2018), 2541.Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Das D., Nayak D. R., Dash R., and Majhi B.. 2019. An empirical evaluation of extreme learning machine: Application to handwritten character recognition. Multimedia Tools Appl. (2019), 129.Google ScholarGoogle Scholar
  100. [100] Hussain S. and Ali S.. 2015. Nastalique segmentation-based approach for Urdu OCR. Int. J. Doc. Anal. Recogn. 18 (2015), 357374.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. [101] Jebril N. A., Al-Zoubi H. R., and Al-Haija Q. A.. 2018. Recognition of handwritten arabic characters using histograms of oriented gradient (HOG). Pattern Recogn. Image Anal. 28 (2018), 321345.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. [102] Khan N. H., Adnan A., and Basar S.. 2018. Urdu ligature recognition using multi-level agglomerative hierarchical clustering. Clust. Comput. 21 (2018), 503514.Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Lamghari N., Charaf M., and Raghay S.. 2018. Hybrid feature vector for the recognition of arabic handwritten characters using feed-forward neural network. Arab. J. Sci. Eng. 43 (2018), 70317039.Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Naz S., Umar A. I., Ahmed R., Razzak M. I., Rashid S. F., and Shafait F.. 2016. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks. SpringerPlus 5 (2016), 2010.Google ScholarGoogle ScholarCross RefCross Ref
  105. [105] Naz S., Umar A. I., Ahmad R., Ahmed S. B., Shirazi S. H., and Razzak M. I.. 2017. Urdu Nasta'liq text recognition system based on multi-dimensional recurrent neural network and statistical features. Neural Comput. Appl. 28 (2017), 219231.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. [106] Jehangir S., Khan S., Khan S., Nazir S., and Hussain A.. 2021. Zernike moments based handwritten Pashto character recognition using linear discriminant analysis. Mehran Univ. Res. J. Eng. Technol. 40, 1 (2021), 152159.Google ScholarGoogle ScholarCross RefCross Ref
  107. [107] Rafeeq M. J., ur Rehman Z., Khan A., Khan I. A., and Jadoon W.. 2019. Ligature categorization based Nastaliq Urdu recognition using deep neural networks. Comput. Math. Org. Theory 25 (2019), 184195.Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. [108] Din I. U., Siddiqi I., Khalid S., and Azam T.. 2017. Segmentation-free optical character recognition for printed Urdu text. EURASIP J. Image Vid. Process. 2017 (2017), 62.Google ScholarGoogle ScholarCross RefCross Ref
  109. [109] Valikhani S., Abdali-Mohammadi F., and Fathi A.. 2019. Online continuous multi-stroke Persian/Arabic character recognition by novel spatio-temporal features for digitizer pen devices. Neural Comput. Appl. (2019), 120.Google ScholarGoogle Scholar
  110. [110] Khalifa M. and BingRu Y.. 2011. A novel word based arabic handwritten recognition system using SVM classifier. In Advanced Research on Electronic Commerce, Web Application, and Communication. Springer, Berlin, 163171.Google ScholarGoogle ScholarCross RefCross Ref
  111. [111] Al-Jamimi H. A. and Mahmoud S. A.. 2010. Arabic character recognition using gabor filters. In Innovations and Advances in Computer Sciences and Engineering. 113118.Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Rashad M. and Semary N. A.. 2014. Isolated printed arabic character recognition using KNN and random forest tree classifiers. In Advanced Machine Learning Technologies and Applications. Springer, Cham, 1117.Google ScholarGoogle Scholar
  113. [113] Amara M., Zidi K., Zidi S., and Ghedira K.. 2014. Arabic Character Recognition Based M-SVM: Review. Springer, Cham, 1825.Google ScholarGoogle Scholar
  114. [114] Sahlol A., Elfattah M. A., Suen C. Y., and Hassanien A. E.. 2017. Particle Swarm Optimization with Random Forests for Handwritten Arabic Recognition System. Springer, Cham, 437446.Google ScholarGoogle Scholar
  115. [115] Lopresti D., Nagy G., Seth S., and Zhang X.. 2008. Multi-character Field Recognition for Arabic and Chinese Handwriting. Springer, Berlin, 218230.Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Javed S. T. and Hussain S.. 2013. Segmentation Based Urdu Nastalique OCR. Springer, Berlin, 4149.Google ScholarGoogle Scholar
  117. [117] Ali M. A.. 2008. Arabic Handwritten Characters Classification Using Learning Vector Quantization Algorithm. Springer, Berlin, 463470.Google ScholarGoogle Scholar
  118. [118] Mezghani A., Kallel F., Kanoun S., and Kherallah M.. 2018. Contribution on Character Modelling for Handwritten Arabic Text Recognition. Springer, Cham, 370379.Google ScholarGoogle Scholar
  119. [119] Ahmed R., Dashtipour K., Gogate M., Raza A., Zhang R., Huang K., et al. 2019. Offline Arabic handwriting recognition using deep machine learning: A review of recent advances. In Proceedings of the International Conference on Brain Inspired Cognitive Systems. 457468.Google ScholarGoogle Scholar
  120. [120] Ahmad I., Wang X., Li R., Ahmed M., and Ullah R.. 2017. Line and ligature segmentation of Urdu nastaleeq text. IEEE Access 5 (2017), 1092410940.Google ScholarGoogle ScholarCross RefCross Ref
  121. [121] Khan N. H. and Adnan A.. 2018. Urdu optical character recognition systems: Present contributions and future directions. IEEE Access 6 (2018), 4601946046.Google ScholarGoogle ScholarCross RefCross Ref
  122. [122] Uddin I., Siddiqi I., and Khalid S.. 2017. A holistic approach for recognition of complete urdu ligatures using hidden markov models. In Proceedings of the International Conference on Frontiers of Information Technology (FIT’17). 155160.Google ScholarGoogle ScholarCross RefCross Ref
  123. [123] AlKhateeb J. H., Khelifi F., Jiang J., and Ipson S. S.. 2009. A new approach for off-line handwritten Arabic word recognition using KNN classifier. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications. 191194.Google ScholarGoogle ScholarCross RefCross Ref
  124. [124] Fadeel M. A.. 2016. An efficient segmentation algorithm for arabic handwritten characters recognition system. In Proceedings of the 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI’16). 172177.Google ScholarGoogle ScholarCross RefCross Ref
  125. [125] Tlemsani R. and Belbachir K.. 2018. An improved arabic on-line characters recognition system. In Proceedings of the International Arab Conference on Information Technology (ACIT’18). 110.Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Raza A., Siddiqi I., Abidi A., and Arif F.. 2012. An unconstrained benchmark Urdu handwritten sentence database with automatic line segmentation. In Proceedings of the International Conference on Frontiers in Handwriting Recognition. 491496.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. [127] Elleuch M., Tagougui N., and Kherallah M.. 2015. Arabic handwritten characters recognition using deep belief neural networks. In Proceedings of the IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD’15). 15.Google ScholarGoogle ScholarCross RefCross Ref
  128. [128] Ahmad R., Afzal M. Z., Rashid S. F., Liwicki M., Breuel T., and Dengel A.. 2016. Kpti: Katib's pashto text imagebase and deep learning benchmark. In Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR’16). 453458.Google ScholarGoogle ScholarCross RefCross Ref
  129. [129] Ahmed Z., Iqbal K., Mehmood I., and Ayub M. A.. 2017. Ligature analysis-based Urdu OCR framework. In Proceedings of the International Conference on Frontiers of Information Technology (FIT’17). 8792.Google ScholarGoogle ScholarCross RefCross Ref
  130. [130] Metwally A. H., Khalil M. I., and Abbas H. M.. 2017. Offline Arabic handwriting recognition using hidden Markov models and post-recognition lexicon matching. In Proceedings of the 12th International Conference on Computer Engineering and Systems (ICCES’17). 238243.Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Lutf M., You X., and Li H.. 2010. Offline arabic handwriting identification using language diacritics. In Proceedings of the 20th International Conference on Pattern Recognition. 19121915.Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. [132] Ul-Hasan A., Ahmed S. B., Rashid F., Shafait F., and Breuel T. M.. 2013. Offline printed Urdu Nastaleeq script recognition with bidirectional LSTM networks. In Proceedings of the 12th International Conference on Document Analysis and Recognition. 10611065.Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. [133] Nakkach H., Hichri S., Haboubi S., and Amiri H.. 2016. Ontology-based approach for online arabic character recognition. In Proceedings of the 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV’16). 200205.Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Sardar S. and Wahab A.. 2010. Optical character recognition system for Urdu. In Proceedings of the International Conference on Information and Emerging Technologies. 15.Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Humaidi A. J. and Kadhim T. M.. 2017. Recognition of arabic characters using spiking neural networks. In Proceedings of the International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC’17). 711.Google ScholarGoogle ScholarCross RefCross Ref
  136. [136] El Moubtahij H., Halli A., and Satori K.. 2016. Recognition of off-line Arabic handwriting words using HMM toolkit (HTK). In Proceedings of the 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV’16). 167171.Google ScholarGoogle ScholarCross RefCross Ref
  137. [137] Azeem S. A. and Ahmed H.. 2011. Recognition of segmented online Arabic handwritten characters of the ADAB database. In Proceedings of the 10th International Conference on Machine Learning and Applications and Workshops. 204207.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. [138] Jain M., Mathew M., and Jawahar C.. 2017. Unconstrained ocr for urdu using deep cnn-rnn hybrid networks. In Proceedings of the 4th IAPR Asian Conference on Pattern Recognition (ACPR’17). 747752.Google ScholarGoogle ScholarCross RefCross Ref
  139. [139] Khan W. Q. and Khan R. Q.. 2015. Urdu optical character recognition technique using point feature matching; a generic approach. In Proceedings of the International Conference on Information and Communication Technologies (ICICT’15). 17.Google ScholarGoogle ScholarCross RefCross Ref
  140. [140] Khan K., Khan R. U., Alkhalifah A., and Ahmad N.. 2015. Urdu text classification using decision trees. In Proceedings of the 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET’15). 14.Google ScholarGoogle ScholarCross RefCross Ref
  141. [141] Bougamouza F., Hazmoune S., and Benmohammed M.. 2016. Using Mel Frequency Cepstral Coefficient method for online Arabic characters handwriting recognition. In Proceedings of the 5th International Conference on Multimedia Computing and Systems (ICMCS’16). 8792.Google ScholarGoogle ScholarCross RefCross Ref
  142. [142] Gimenez A., Khoury I., and Juan A.. 2010. Windowed bernoulli mixture hmms for arabic handwritten word recognition. In Proceedings of the 12th International Conference on Frontiers in Handwriting Recognition. 533538.Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. [143] Chandio A. A., Pickering M., and Shafi K.. 2018. Character classification and recognition for Urdu texts in natural scene images. In Proceedings of the International Conference on Computing, Mathematics and Engineering Technologies (iCoMET’18). 16.Google ScholarGoogle ScholarCross RefCross Ref
  144. [144] Kaur G., Singh S., and Kumar A.. 2017. Urdu ligature recognition techniques-A review. In Proceedings of the International Conference on Intelligent Communication and Computational Techniques (ICCT’17). 285291.Google ScholarGoogle ScholarCross RefCross Ref
  145. [145] Abdalkafor A. S.. 2018. Survey for databases on arabic off-line handwritten characters recognition system. In Proceedings of the 1st International Conference on Computer Applications & Information Security (ICCAIS’18). 16.Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Kacem A., Aouïti N., and Belaïd A.. 2012. Structural features extraction for handwritten Arabic personal names recognition. In Proceedings of the International Conference on Frontiers in Handwriting Recognition. 268273.Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. [147] Mozaffari S. and Soltanizadeh H.. 2009. ICDAR 2009 handwritten Farsi/Arabic character recognition competition. In Proceedings of the 10th International Conference on Document Analysis and Recognition. 14131417.Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. [148] Boukerma H. and Farah N.. 2012. Preprocessing algorithms for Arabic handwriting recognition systems. In Proceedings of the International Conference on Advanced Computer Science Applications and Technologies (ACSAT’12). 318323.Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. [149] Hamdani M., Mousa A. E.-D., and Ney H.. 2013. Open vocabulary Arabic handwriting recognition using morphological decomposition. In Proceedings of the 12th International Conference on Document Analysis and Recognition. 280284.Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. [150] Abuzaraida M. A., Zeki A. M., and Zeki A. M.. 2013. Online recognition system for handwritten Arabic mathematical symbols. In Proceedings of the International Conference on Advanced Computer Science Applications and Technologies. 223227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. [151] Assayony M. O. and Mahmoud S. A.. 2017. Integration of gabor features with bag-of-features framework for arabic handwritten word recognition. In Proceedings of the 9th IEEE-GCC Conference and Exhibition (GCCCE). 14.Google ScholarGoogle Scholar
  152. [152] Eltay M., Zidouri A. and Ahmad I.. 2020. Exploring deep learning approaches to recognize handwritten arabic texts. IEEE Access 8 (2020), 8988289898. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  153. [153] Nakkach H., Hichri S., Haboubi S., and Amiri H.. 2016. Hybrid approach to features extraction for online Arabic character recognition. In Proceedings of the 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV’16). 253258.Google ScholarGoogle Scholar
  154. [154] Hassan S., Irfan A., Mirza A., and Siddiqi I.. 2019. Cursive handwritten text recognition using bi-directional LSTMs: A case study on Urdu handwriting. In Proceedings of the International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML’19). 6772.Google ScholarGoogle ScholarCross RefCross Ref
  155. [155] Wilson-Nunn D., Lyons T., Papavasiliou A., and Ni H.. 2018. A path signature approach to online arabic handwriting recognition. In Proceedings of the IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR’18). 135139.Google ScholarGoogle ScholarCross RefCross Ref
  156. [156] Hassen H. and Al-Maadeed S.. 2017. Arabic handwriting recognition using sequential minimal optimization. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 7984.Google ScholarGoogle ScholarCross RefCross Ref
  157. [157] Alsaeedi A., Al Mutawa H., Snoussi S., Natheer S., Omri K., and Al Subhi W.. 2018. Arabic words Recognition using CNN and TNN on a Smartphone. In Proceedings of the IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR’18). 5761.Google ScholarGoogle ScholarCross RefCross Ref
  158. [158] Akouaydi H., Abdelhedi S., Njah S., Zaied M., and Alimi A. M.. 2017. Decision trees based on perceptual codes for on-line Arabic character recognition. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 153157.Google ScholarGoogle ScholarCross RefCross Ref
  159. [159] Ghanmi N., Awal A.-M., and Kooli N.. 2017. Dynamic Bayesian networks for handwritten Arabic word recognition. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 104108.Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Alaasam R., Kurar B., Kassis M., and El-Sana J.. 2017. Experiment study on utilizing convolutional neural networks to recognize historical Arabic handwritten text. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 124128.Google ScholarGoogle ScholarCross RefCross Ref
  161. [161] Ahmad R., Afzal M. Z., Rashid S. F., Liwicki M., and Dengel A.. 2017. Text-line segmentation of large titles and headings in Arabic like script. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 168172.Google ScholarGoogle ScholarCross RefCross Ref
  162. [162] Lawgali A., Angelova M., and Bouridane A.. 2013. HACDB: Handwritten Arabic characters database for automatic character recognition. In Proceedings of the European Workshop on Visual Information Processing (EUVIP’13). 255259.Google ScholarGoogle Scholar
  163. [163] Althobaiti H. and Lu C.. 2017. A survey on Arabic Optical Character Recognition and an isolated handwritten Arabic Character Recognition algorithm using encoded freeman chain code. In Proceedings of the 51st Annual Conference on Information Sciences and Systems (CISS’17). 16.Google ScholarGoogle Scholar
  164. [164] Asebriy Z., Raghay S., Bencharef O., and Chihab Y.. 2014. Comparative systems of handwriting Arabic character recognition. In Proceedings of the 2nd World Conference on Complex Systems (WCCS’14). 9093.Google ScholarGoogle Scholar
  165. [165] Beg A., Ahmed F., and Campbell P.. 2010. Hybrid OCR techniques for cursive script languages-a review and applications. In Proceedings of the 2nd International Conference on Computational Intelligence, Communication Systems and Networks. 101105.Google ScholarGoogle Scholar
  166. [166] Al-Helali B. M. and Mahmoud S. A.. 2016. A statistical framework for online Arabic character recognition. Cybernet. Syst. 47 (2016), 478498.Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. [167] Haraty R. and El-Zabadani H.. 2005. Abjad Hawwaz: An offline Arabic handwriting recognition system. Int. J. Comput. Appl. 27 (2005), 178189.Google ScholarGoogle Scholar
  168. [168] Jabbar A., Iqbal S., Akhunzada A., and Abbas Q.. 2018. An improved Urdu stemming algorithm for text mining based on multi-step hybrid approach. J. Exp. Theor. Artif. Intell. 30 (2018), 703723.Google ScholarGoogle Scholar
  169. [169] Saudagar A. K. J. and Mohammad H.. 2018. Augmented reality mobile application for arabic text extraction, recognition and translation. J. Stat. Manage. Syst. 21 (2018), 617629.Google ScholarGoogle ScholarCross RefCross Ref
  170. [170] Shastri L. and Fontaine T.. 1995. Character recognition digit recognition pattern recognition spatiotemporal neural networks modular networks segmentation problem. Connect. Sci. 7 (1995), 211246.Google ScholarGoogle Scholar
  171. [171] Ahmed R., Dashtipour K., Gogate M., Raza A., Zhang R., Huang K., ... and Hussain A.. 2020. Offline arabic handwriting recognition using deep machine learning: A review of recent advances. In International Conference on Brain Inspired Cognitive Systems. Springer, Cham. 457468.Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. [172] Li S.. 2017. Handwritten character recognition technology combined with artificial intelligence. J. Discr. Math. Sci. Cryptogr. 20 (2017), 167178.Google ScholarGoogle ScholarCross RefCross Ref
  173. [173] Awaida S. M. and Mahmoud S. A.. 2013. Writer identification of arabic text using statistical and structural features. Cybernet. Syst. 44 (2013), 5776.Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. [174] Naz S., Khan N. H., Zahoor S., and Razzak M. I.. 2020. Deep OCR for Arabic script-based language like Pastho. Expert Syst. 37, 5 (2020), e12565.Google ScholarGoogle ScholarCross RefCross Ref
  175. [175] Arafat S. Y. and Iqbal M. J.. 2019. Two stream deep neural network for sequence-based urdu ligature recognition. IEEE Access 7 (2019), 159090159099.Google ScholarGoogle ScholarCross RefCross Ref
  176. [176] Rabi M., Amrouch M., and Mahani Z.. 2018. Cursive Arabic handwriting recognition system without explicit segmentation based on hidden Markov models. J. Data Min. Digit. Human. (2018).Google ScholarGoogle ScholarCross RefCross Ref
  177. [177] El Abed H., Märgner V., and Alimi A.. 2011. On-line Arabic handwriting recognition competition - ADAB database and participating systems. Int. J. Doc. Anal. Recogn. 14 (01/01 2011), 1523.Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. [178] F. Slimane, R. Ingold, S. Kanoun, A. M. Alimi, and J. Hennebert. 2009. A new Arabic printed text image database and evaluation protocols. 10th International Conference on Document Analysis and Recognition, Barcelona, 946--950. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. [179] Elzobi M., Al-Hamadi A., Al Aghbari Z., and Dings L.. 2012. IESK-ArDB: A database for handwritten Arabic and an optimized topological segmentation approach. Doc. Anal. Recogn. 16 (10/21 2012).Google ScholarGoogle Scholar
  180. [180] Sabbour N. and Shafait F.. 2013. A segmentation-free approach to Arabic and Urdu OCR. In Document Recognition and Retrieval XX. 86580N.Google ScholarGoogle ScholarCross RefCross Ref
  181. [181] Lawgali A., Angelova M., and Bouridane A.. 2013. HACDB: Handwritten Arabic characters database for automatic character recognition (unpublished).Google ScholarGoogle Scholar
  182. [182] Farrahi Moghaddam R., Cheriet M., Adankon M. M., Filonenko K., and Wisnovsky R.. 2010. IBN SINA: A database for research on processing and understanding of Arabic manuscripts images. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems. 1118.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Analysis of Cursive Text Recognition Systems: A Systematic Literature Review

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Asian and Low-Resource Language Information Processing
      ACM Transactions on Asian and Low-Resource Language Information Processing  Volume 22, Issue 7
      July 2023
      422 pages
      ISSN:2375-4699
      EISSN:2375-4702
      DOI:10.1145/3610376
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 July 2023
      • Online AM: 13 April 2023
      • Accepted: 8 April 2023
      • Revised: 3 January 2023
      • Received: 13 April 2022
      Published in tallip Volume 22, Issue 7

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)321
      • Downloads (Last 6 weeks)29

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text