skip to main content
research-article
Open Access

Complex Wrinkle Field Evolution

Published:26 July 2023Publication History
Skip Abstract Section

Abstract

We propose a new approach for representing wrinkles, designed to capture complex and detailed wrinkle behavior on coarse triangle meshes, called Complex Wrinkle Fields. Complex Wrinkle Fields consist of an almost-everywhere-unit complex-valued phase function over the surface; a frequency one-form; and an amplitude scalar, with a soft compatibility condition coupling the frequency and phase. We develop algorithms for interpolating between two such wrinkle fields, for visualizing them as displacements of a Loop-subdivided refinement of the base mesh, and for making smooth local edits to the wrinkle amplitude, frequency, and/or orientation. These algorithms make it possible, for the first time, to create and edit animations of wrinkles on triangle meshes that are smooth in space, evolve smoothly through time, include singularities along with their complex interactions, and that represent frequencies far finer than the surface resolution.

Skip Supplemental Material Section

Supplemental Material

papers_494_VOD.mp4

presentation

mp4

439.5 MB

References

  1. Hillel Aharoni, Desislava Todorova, Octavio Albarran, Lucas Goehring, Randall Kamien, and Eleni Katifori. 2017. The smectic order of wrinkles. Nature Communications 8 (07 2017), 15809.Google ScholarGoogle Scholar
  2. George Biddell Airy. 1842. Tides and waves. (1842).Google ScholarGoogle Scholar
  3. Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans. Graph. 26, 3 (jul 2007), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Narasimha Boddeti, Yunlong Tang, Kurt Maute, David W Rosen, and Martin L Dunn. 2020. Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites. Scientific reports 10, 1 (2020), 1--15.Google ScholarGoogle Scholar
  5. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (jul 2009), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Guoning Chen, Vivek Kwatra, Li-Yi Wei, Charles D. Hansen, and Eugene Zhang. 2012. Design of 2D Time-Varying Vector Fields. IEEE Transactions on Visualization and Computer Graphics 18, 10 (2012), 1717--1730.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Lan Chen, Juntao Ye, Liguo Jiang, Chengcheng Ma, Zhanglin Cheng, and Xiaopeng Zhang. 2018. Synthesizing cloth wrinkles by CNN-based geometry image superresolution. Computer Animation and Virtual Worlds 29 (05 2018), e1810.Google ScholarGoogle Scholar
  8. Lan Chen, Juntao Ye, and Xiaopeng Zhang. 2021b. Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis. Journal of Computer Science and Technology 36 (06 2021), 478--493.Google ScholarGoogle Scholar
  9. Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (Oct. 2008), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Zhen Chen, Hsiao-Yu Chen, Danny M. Kaufman, Mélina Skouras, and Etienne Vouga. 2021a. Fine Wrinkling on Coarsely Meshed Thin Shells. ACM Trans. Graph. 40, 5, Article 190 (aug 2021), 32 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on Discrete Surfaces. Computer Graphics Forum 29, 5 (2010), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  12. Bram Custers and Amir Vaxman. 2020. Subdivision Directional Fields. ACM Trans. Graph. 39, 2, Article 11 (feb 2020), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lawrence D. Cutler, Reid Gershbein, Xiaohuan Corina Wang, Cassidy Curtis, Erwan Maigret, Luca Prasso, and Peter Farson. 2005. An Art-Directed Wrinkle System for CG Character Clothing. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '05). Association for Computing Machinery, New York, NY, USA, 117--125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016b. Subdivision Exterior Calculus for Geometry Processing. ACM Trans. Graph. 35, 4, Article 133 (jul 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016a. Vector Field Processing on Triangle Meshes. In ACM SIGGRAPH 2016 Courses (Anaheim, California) (SIGGRAPH '16). Association for Computing Machinery, New York, NY, USA, Article 27, 49 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector Fields with Complex Polynomials. Comput. Graph. Forum 33, 5 (aug 2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector Fields. ACM Trans. Graph. 34, 4, Article 38 (jul 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Ezuz, B. Heeren, O. Azencot, M. Rumpf, and M. Ben-Chen. 2019. Elastic Correspondence between Triangle Meshes. Computer Graphics Forum 38, 2 (2019), 121--134.Google ScholarGoogle ScholarCross RefCross Ref
  19. Gerald Farin. 1986. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design 3, 2 (1986), 83--127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3 (jul 2007), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Russell Gillette, Craig Peters, Nicholas Vining, Essex Edwards, and Alla Sheffer. 2015. Real-Time Dynamic Wrinkling of Coarse Animated Cloth. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '15). Association for Computing Machinery, New York, NY, USA, 17--26.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. 2014. Exploring the Geometry of the Space of Shells. Computer Graphics Forum 33, 5 (2014), 247--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. 2012. Time-Discrete Geodesics in the Space of Shells. Computer Graphics Forum 31, 5 (2012), 1755--1764.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant Field-Aligned Meshes. ACM Trans. Graph. 34, 6, Article 189 (oct 2015), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan. 2018. Water Surface Wavelets. ACM Trans. Graph. 37, 4, Article 94 (jul 2018), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stefan Jeschke and Chris Wojtan. 2015. Water Wave Animation via Wavefront Parameter Interpolation. ACM Trans. Graph. 34, 3, Article 27 (may 2015), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Stefan Jeschke and Chris Wojtan. 2017. Water Wave Packets. ACM Trans. Graph. 36, 4, Article 103 (jul 2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4, Article 59 (jul 2013), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34, 4, Article 39 (jul 2015), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Robert V. Kohn. 2006. Energy-driven pattern formation. Proceedings of the International Congress of Mathematicians (2006).Google ScholarGoogle Scholar
  31. Zorah Lähner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and Realistic Clothing Modeling. In ECCV.Google ScholarGoogle Scholar
  32. Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wan-chiu Li, Bruno Vallet, Nicolas Ray, and Bruno Levy. 2006. Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1315--1322.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nils Lichtenberg, Noeska Smit, Christian Hansen, and Kai Lawonn. 2018. Real-time field aligned stripe patterns. Computers and Graphics 74 (aug 2018), 137--149.Google ScholarGoogle Scholar
  35. Ruotian Ling, Jin Huang, Bert Jüttler, Feng Sun, Hujun Bao, and Wenping Wang. 2015. Spectral Quadrangulation with Feature Curve Alignment and Element Size Control. ACM Trans. Graph. 34, 1, Article 11 (dec 2015), 11 pages.Google ScholarGoogle Scholar
  36. Charles T. Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Master's thesis. University of Utah.Google ScholarGoogle Scholar
  37. Rahul Narain, Armin Samii, and James F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (nov 2012), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yuta Noma, Nobuyuki Umetani, and Yoshihiro Kawahara. 2022. Fast Editing of Singularities in Field-Aligned Stripe Patterns. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA '22). Association for Computing Machinery, New York, NY, USA, Article 37, 8 pages.Google ScholarGoogle Scholar
  39. Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM Trans. Graph. 33, 4, Article 134 (jul 2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Joseph D. Paulsen, Evan Hohlfeld, Hunter King, Jiangshui Huang, Zhanlong Qiu, Thomas P. Russell, Narayanan Menon, Dominic Vella, and Benny Davidovitch. 2016. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proceedings of the National Academy of Sciences 113, 5 (2016), 1144--1149.Google ScholarGoogle ScholarCross RefCross Ref
  41. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (oct 2006), 1460--1485.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-Aware Direction Field Processing. ACM Trans. Graph. 29, 1, Article 1 (dec 2009), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2, Article 10 (may 2008), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Olivier Rémillard and Paul G. Kry. 2013. Embedded Thin Shells for Wrinkle Simulation. ACM Trans. Graph. 32, 4, Article 50 (jul 2013), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and Alla Sheffer. 2010. Animation Wrinkling: Augmenting Coarse Cloth Simulations with Realistic-Looking Wrinkles. ACM Trans. Graph. 29, 6, Article 157 (dec 2010), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Martin Rumpf and Benedikt Wirth. 2014. Variational time discretization of geodesic calculus. IMA J. Numer. Anal. 35, 3 (05 2014), 1011--1046.Google ScholarGoogle Scholar
  47. Igor Santesteban, Miguel Otaduy, and Dan Casas. 2019. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38 (05 2019), 355--366.Google ScholarGoogle Scholar
  48. Josua Sassen, Klaus Hildebrandt, and Martin Rumpf. 2020. Nonlinear Deformation Synthesis via Sparse Principal Geodesic Analysis. Computer Graphics Forum 39, 5 (2020), 119--132.Google ScholarGoogle ScholarCross RefCross Ref
  49. Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. 2018. Editing Fluid Animation Using Flow Interpolation. ACM Trans. Graph. 37, 5, Article 173 (sep 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat Method. ACM Trans. Graph. 38, 3, Article 24 (jun 2019), 19 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (jul 2014), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Justin Solomon and Amir Vaxman. 2019. Optimal Transport-Based Polar Interpolation of Directional Fields. ACM Trans. Graph. 38, 4, Article 88 (jul 2019), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Greg Turk. 1991. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion. SIGGRAPH Comput. Graph. 25, 4 (jul 1991), 289--298.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. Computer Graphics Forum (2016).Google ScholarGoogle Scholar
  55. Ryan Viertel and Braxton Osting. 2019. An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory. SIAM Journal on Scientific Computing 41, 1 (2019), A452--A479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. P. Volino and N.M. Thalmann. 1998. The SPHERIGON: a simple polygon patch for smoothing quickly your polygonal meshes. In Proceedings Computer Animation '98 (Cat. No.98EX169). 72--78.Google ScholarGoogle Scholar
  57. Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2015. Real-Time Nonlinear Shape Interpolation. ACM Trans. Graph. 34, 3, Article 34 (may 2015), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Huamin Wang. 2021. GPU-Based Simulation of Cloth Wrinkles at Submillimeter Levels. ACM Trans. Graph. 40, 4, Article 169 (jul 2021), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Ke Wang, Weiwei, Yiying Tong, Mathieu Desbrun, and Peter Schröder. 2006. Edge Subdivision Schemes and the Construction of Smooth Vector Fields. ACM Trans. Graph. 25, 3 (jul 2006), 1041--1048.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Andrew Witkin and Michael Kass. 1991. Reaction-Diffusion Textures. SIGGRAPH Comput. Graph. 25, 4 (jul 1991), 299--308.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. Zavala-Hidalgo, M.A. Bourassa, S.L. Morey, J.J. O'Brien, and P. Yu. 2003. A new temporal interpolation method for high-frequency vector wind fields. In Oceans 2003., Vol. 2. 1050--1053 Vol.2.Google ScholarGoogle Scholar
  62. Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector Field Design on Surfaces. ACM Trans. Graph. 25, 4 (oct 2006), 1294--1326.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Muyang Zhang, Jin Huang, Xinguo Liu, and Hujun Bao. 2010. A Wave-Based Anisotropic Quadrangulation Method. ACM Trans. Graph. 29, 4, Article 118 (jul 2010), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Meng Zhang, Tuanfeng Wang, Duygu Ceylan, and Niloy J Mitra. 2021. Deep detail enhancement for any garment. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 399--411.Google ScholarGoogle Scholar
  65. Evgeny Zuenko and Matthias Harders. 2019. Wrinkles, Folds, Creases, Buckles: Small-Scale Surface Deformations as Periodic Functions on 3D Meshes. IEEE Transactions on Visualization and Computer Graphics PP (05 2019).Google ScholarGoogle Scholar

Index Terms

  1. Complex Wrinkle Field Evolution

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 4
      August 2023
      1912 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3609020
      Issue’s Table of Contents

      Copyright © 2023 Owner/Author(s)

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 July 2023
      Published in tog Volume 42, Issue 4

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader