skip to main content
research-article
Open Access

A Contact Proxy Splitting Method for Lagrangian Solid-Fluid Coupling

Published:26 July 2023Publication History
Skip Abstract Section

Abstract

We present a robust and efficient method for simulating Lagrangian solid-fluid coupling based on a new operator splitting strategy. We use variational formulations to approximate fluid properties and solid-fluid interactions, and introduce a unified two-way coupling formulation for SPH fluids and FEM solids using interior point barrier-based frictional contact. We split the resulting optimization problem into a fluid phase and a solid-coupling phase using a novel time-splitting approach with augmented contact proxies, and propose efficient custom linear solvers. Our technique accounts for fluids interaction with nonlinear hyperelastic objects of different geometries and codimensions, while maintaining an algorithmically guaranteed non-penetrating criterion. Comprehensive benchmarks and experiments demonstrate the efficacy of our method.

Skip Supplemental Material Section

Supplemental Material

papers_237_VOD.mp4

presentation

mp4

226.9 MB

References

  1. Nadir Akinci, Jens Cornelis, Gizem Akinci, and Matthias Teschner. 2013. Coupling elastic solids with smoothed particle hydrodynamics fluids. Computer Animation and Virtual Worlds 24, 3--4 (2013), 195--203.Google ScholarGoogle ScholarCross RefCross Ref
  2. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics (TOG) 26, 3 (2007), 100--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete viscous sheets. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Markus Becker, Markus Ihmsen, and Matthias Teschner. 2009a. Corotated SPH for Deformable Solids.. In NPH. 27--34.Google ScholarGoogle Scholar
  6. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 209--217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Markus Becker, Hendrik Tessendorf, and Matthias Teschner. 2009b. Direct forcing for lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 493--503.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jan Bender and Dan Koschier. 2015. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation. 147--155.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2016), 1193--1206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jan Bender, Tassilo Kugelstadt, Marcel Weiler, and Dan Koschier. 2019. Volume maps: An implicit boundary representation for SPH. In Motion, Interaction and Games. 1--10.Google ScholarGoogle Scholar
  11. Javier Bonet and T-SL Lok. 1999. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in applied mechanics and engineering 180, 1--2 (1999), 97--115.Google ScholarGoogle Scholar
  12. Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2019. The reduced immersed method for real-time fluid-elastic solid interaction and contact simulation. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Robert Bridson. 2015. Fluid simulation for computer graphics. AK Peters/CRC Press.Google ScholarGoogle Scholar
  14. Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Nuttapong Chentanez, Tolga G Goktekin, Bryan E Feldman, and James F O'Brien. 2006. Simultaneous coupling of fluids and deformable bodies. In ACM SIGGRAPH 2006 Sketches. 65--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O'brien. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions on Graphics (TOG) 32, 2 (2013), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and Chenfanfu Jiang. 2020. IQ-MPM: an interface quadrature material point method for non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Transactions on Graphics (TOG) 39, 4 (2020), 51--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ronald P Fedkiw. 2002. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 1 (2002), 200--224.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of computational physics 152, 2 (1999), 457--492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Yun Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Georg C Ganzenmüller. 2015. An hourglass control algorithm for Lagrangian smooth particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering 286 (2015), 87--106.Google ScholarGoogle ScholarCross RefCross Ref
  22. Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018. Animating fluid sediment mixture in particle-laden flows. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019. Interlinked SPH pressure solvers for strong fluid-rigid coupling. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Transactions on Graphics (TOG) 24, 3 (2005), 973--981.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. David AB Hyde, Steven W Gagniere, Alan Marquez-Razon, and Joseph Teran. 2020. An implicit updated lagrangian formulation for liquids with large surface energy. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Markus Ihmsen, Nadir Akinci, Marc Gissler, and Matthias Teschner. 2010. Boundary Handling and Adaptive Time-stepping for PCISPH. VRIPHYS'10, 79--88.Google ScholarGoogle Scholar
  27. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2013. Implicit incompressible SPH. IEEE transactions on visualization and computer graphics 20, 3 (2013), 426--435.Google ScholarGoogle Scholar
  28. Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses. 1--52.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Bryan M Klingner, Bryan E Feldman, Nuttapong Chentanez, and James F O'brien. 2006. Fluid animation with dynamic meshes. In ACM SIGGRAPH 2006 Papers. 820--825.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Dan Koschier and Jan Bender. 2017. Density maps for improved SPH boundary handling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2022. A Survey on SPH Methods in Computer Graphics. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 737--760.Google ScholarGoogle Scholar
  32. Tassilo Kugelstadt, Jan Bender, José Antonio Fernández-Fernández, Stefan Rhys Jeske, Fabian Löschner, and Andreas Longva. 2021. Fast corotated elastic SPH solids with implicit zero-energy mode control. Proceedings of the ACM on Computer Graphics and Interactive Techniques 4, 3 (2021), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine body dynamics: Fast, stable & intersection-free simulation of stiff materials. arXiv preprint arXiv:2201.10022 (2022).Google ScholarGoogle Scholar
  34. David IW Levin, Joshua Litven, Garrett L Jones, Shinjiro Sueda, and Dinesh K Pai. 2011. Eulerian solid simulation with contact. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020), 49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Minchen Li, Danny M Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental potential contact. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2022. BFEMP: Interpenetration-free MPM-FEM coupling with barrier contact. Computer Methods in Applied Mechanics and Engineering 390 (2022), 114350.Google ScholarGoogle ScholarCross RefCross Ref
  38. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Joe J Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30 (1992), 543--574.Google ScholarGoogle Scholar
  40. Joe J Monaghan. 1994. Simulating free surface flows with SPH. Journal of computational physics 110, 2 (1994), 399--406.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Joe J Monaghan. 2005. Smoothed particle hydrodynamics. Reports on progress in physics 68, 8 (2005), 1703.Google ScholarGoogle Scholar
  42. Jean Jacques Moreau. 2011. On unilateral constraints, friction and plasticity. In New variational techniques in mathematical physics. Springer, 171--322.Google ScholarGoogle Scholar
  43. Matthias Müller, David Charypar, and Markus H Gross. 2003. Particle-based fluid simulation for interactive applications.. In Symposium on Computer animation, Vol. 2.Google ScholarGoogle Scholar
  44. Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An implicit SPH formulation for incompressible linearly elastic solids. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 135--148.Google ScholarGoogle Scholar
  45. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Andreas Peer and Matthias Teschner. 2016. Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE transactions on visualization and computer graphics 23, 12 (2016), 2656--2662.Google ScholarGoogle Scholar
  47. Charles S Peskin. 2002. The immersed boundary method. Acta numerica 11 (2002), 479--517.Google ScholarGoogle Scholar
  48. Avi Robinson-Mosher, Craig Schroeder, and Ronald Fedkiw. 2011. A symmetric positive definite formulation for monolithic fluid structure interaction. J. Comput. Phys. 230, 4 (2011), 1547--1566.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Doug Roble, Nafees bin Zafar, and Henrik Falt. 2005. Cartesian grid fluid simulation with irregular boundary voxels. In ACM SIGGRAPH 2005 Sketches. 138--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In Acm siggraph 2012 courses. 1--50.Google ScholarGoogle Scholar
  52. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. In ACM SIGGRAPH 2009 papers. 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1 (2007), 69--82.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Alexey Stomakhin, Russell Howes, Craig A Schroeder, and Joseph M Teran. 2012. Energetically Consistent Invertible Elasticity.. In Symposium on Computer Animation, Vol. 1.Google ScholarGoogle Scholar
  55. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Computer physics communications 87, 1--2 (1995), 236--252.Google ScholarGoogle Scholar
  57. Tetsuya Takahashi and Christopher Batty. 2020. Monolith: a monolithic pressure-viscosity-contact solver for strong two-way rigid-rigid rigid-fluid coupling. (2020).Google ScholarGoogle Scholar
  58. Tetsuya Takahashi and Christopher Batty. 2021. FrictionalMonolith: a monolithic optimization-based approach for granular flow with contact-aware rigid-body coupling. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Tetsuya Takahashi and Christopher Batty. 2022. ElastoMonolith: A Monolithic Optimization-Based Liquid Solver for Contact-Aware Elastic-Solid Coupling. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C Lin. 2015. Implicit formulation for SPH-based viscous fluids. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 493--502.Google ScholarGoogle Scholar
  61. Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Yun Teng, David IW Levin, and Theodore Kim. 2016. Eulerian solid-fluid coupling. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Boris Valkov, Chris H Rycroft, and Ken Kamrin. 2015. Eulerian method for multiphase interactions of soft solid bodies in fluids. Journal of Applied Mechanics 82, 4 (2015), 041011.Google ScholarGoogle ScholarCross RefCross Ref
  64. Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional surface tension flow using moving-least-squares particles. ACM Transactions on Graphics (TOG) 39, 4 (2020), 42--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A physically consistent implicit viscosity solver for SPH fluids. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 145--155.Google ScholarGoogle Scholar
  66. Xiao Yan, C-F Li, X-S Chen, and S-M Hu. 2018. MPM simulation of interacting fluids and solids. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 183--193.Google ScholarGoogle Scholar
  67. Omar Zarifi and Christopher Batty. 2017. A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Fuzhen Zhang. 2006. The Schur complement and its applications. Vol. 4. Springer Science & Business Media.Google ScholarGoogle Scholar

Index Terms

  1. A Contact Proxy Splitting Method for Lagrangian Solid-Fluid Coupling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 4
      August 2023
      1912 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3609020
      Issue’s Table of Contents

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 July 2023
      Published in tog Volume 42, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader