skip to main content
research-article

A Unified Look at Cultural Heritage: Comparison of Aggregated Scanpaths over Architectural Artifacts

Published:18 May 2023Publication History
Skip Abstract Section

Abstract

The paper contributes to scanpath bundling methods. We propose an analytical approach for statistical comparisons of aggregated scanpath visualizations by means of second-order gaze analysis metrics. The present study explores differences in attention distribution and cognitive processing over architectural objects between architects, art historians, and non-experts. The results show between-group differences in attention dynamics of the aggregated scanpaths. The aggregated scanpaths of both expert groups were focal, while non-experts' scanpaths were ambient. Experts also paid more attention to and tended to remember better the architectural details and their location. The discussion explores the scalability of the proposed approach for Human-Computer Interaction and accessibility technologies designed to enhance the experience of cultural heritage.

Skip Supplemental Material Section

Supplemental Material

1086_Krejtz_Presentation.mp4

mp4

44.8 MB

fp_1086_Krejtz_Presentation1.mp4

mp4

8.5 MB

References

  1. Rudolf Arnheim. 1977. The dynamics of architectural form: based on the 1975 Mary Duke Biddle lectures at the Cooper Union. Vol. 376. Univ of California Press, Berkeley, California. 1==210 pages.Google ScholarGoogle Scholar
  2. Brett Bahle, Valerie M. Beck, and Andrew Hollingworth. 2018. The architecture of interaction between visual working memory and visual attention. Journal of Experimental Psychology: Human Perception and Performance, Vol. 44, 7 (2018), 992--1011. https://doi.org/10.1037/xhp0000509Google ScholarGoogle ScholarCross RefCross Ref
  3. Thomas Balslev, Halszka Jarodzka, Kenneth Holmqvist, Willem de Grave, Arno Muijtjens, Berit Eika, Jeroen van Merriënboer, and Albert Scherpbier. 2012. Visual Expertise In Paediatric Neurology. European journal of paediatric neurology , Vol. 16 (2012), 161--166. https://doi.org/10.1016/j.ejpn.2011.07.004Google ScholarGoogle Scholar
  4. Rita Berto, Stefano Massaccesi, and Margherita Pasini. 2008. Do eye movements measured across high and low fascination photographs differ? Addressing Kaplan's fascination hypothesis. Journal of Environmental Psychology , Vol. 28, 2 (2008), 185--191. https://doi.org/10.1016/j.jenvp.2007.11.004Google ScholarGoogle ScholarCross RefCross Ref
  5. Jos Boys. 2014. Doing Disability Differently An alternative handbook on architecture, dis/ability and designing for everyday life. Routledge, London.Google ScholarGoogle Scholar
  6. Andrew T. Duchowski. 2017. Eye Tracking Methodology: Theory & Practice 3nd ed.). Springer-Verlag, Inc., London, UK.Google ScholarGoogle Scholar
  7. Andrew T. Duchowski, Sophie Jörg, Jaret Screws, Nina A. Gehrer, Michael Schönenberg, and Krzysztof Krejtz. 2019. Guiding Gaze: Expressive Models of Reading and Face Scanning. In Proceedings of the 11th ACM Symposium on Eye Tracking Research and Applications (Denver, Colorado) (ETRA '19). Association for Computing Machinery, New York, NY, USA, Article 25, bibinfonumpages9 pages. https://doi.org/10.1145/3314111.3319848Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lien Dupont, Kristien Ooms, Andrew T. Duchowski, Marc Antrop, and Veerle Van Eetvelde. 2017. Investigating the visual exploration of the rural-urban gradient using eye-tracking. Spatial Cognition & Computation , Vol. 17, 1--2 (2017), 65--88. https://doi.org/10.1080/13875868.2016.1226837Google ScholarGoogle ScholarCross RefCross Ref
  9. Islam Akef Ebeid and Jacek Gwizdka. 2018. Real-time gaze transition entropy. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications. ACM, Warsaw Poland, 1--3. https://doi.org/10.1145/3204493.3208340Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Rebecca N. Elisa, Emili Balaguer-Ballester, and Benjamin A. Parris. 2016. Inattention, Working Memory, and Goal Neglect in a Community Sample. Frontiers in Psychology , Vol. 7 (2016), 1428. https://doi.org/10.3389/fpsyg.2016.01428Google ScholarGoogle ScholarCross RefCross Ref
  11. Piotr Francuz, Iwo Zaniewski, Pawel Augustynowicz, Natalia Kopi?, and Tomasz Jankowski. 2018. Eye Movement Correlates of Expertise in Visual Arts. Frontiers in Human Neuroscience , Vol. 12 (2018), 87. https://doi.org/10.3389/fnhum.2018.00087Google ScholarGoogle ScholarCross RefCross Ref
  12. Nicholas A. Giovinco, Steven M. Sutton, John D. Miller, Timothy M. Rankin, Grant W. Gonzalez, Bijan Najafi, and David G. Armstrong. 2015. A Passing Glance? Differences in Eye Tracking and Gaze Patterns Between Trainees and Experts Reading Plain Film Bunion Radiographs. Journal of Foot and Ankle Surgery , Vol. 54, 3 (2015), 382--391. https://doi.org/10.1053/j.jfas.2014.08.013Google ScholarGoogle ScholarCross RefCross Ref
  13. Andrew Hollingworth and Valerie M Beck. 2016. Memory-based attention capture when multiple items are maintained in visual working memory. Journal of experimental psychology: human perception and performance, Vol. 42, 7 (2016), 911.Google ScholarGoogle ScholarCross RefCross Ref
  14. David Ingle. 1967. Two visual mechanisms underlying the behavior of fish. Psychologische Forschung , Vol. 31, 31 (1967), 44--51.Google ScholarGoogle ScholarCross RefCross Ref
  15. Fatemeh Jam, Hamid Azemati, Abdulhamid Ghanbaran, Jamal Esmaily, and Reza Ebrahimpour. 2021. The role of expertise in visual exploration and aesthetic judgment of residential building façades: An eye-tracking study. Psychology of Aesthetics, Creativity, and the Arts , Vol. 16 (2021), 148. https://doi.org/10.1037/aca0000377Google ScholarGoogle ScholarCross RefCross Ref
  16. Halszka Jarodzka, Kenneth Holmqvist, and Hans Gruber. 2017. Eye tracking in Educational Science: Theoretical frameworks and research agendas. Journal of Eye Movement Research , Vol. 10, 1 (2017), 4==10. https://doi.org/10.16910/jemr.10.1.3Google ScholarGoogle ScholarCross RefCross Ref
  17. John J. Jonides and Derek Evan Nee. 2006. Brain mechanisms of proactive interference in working memory. Neuroscience, Vol. 139, 181--193 (2006), 181--193. https://doi.org/10.1016/j.neuroscience.2005.06.042Google ScholarGoogle ScholarCross RefCross Ref
  18. Stephen Kaplan. 1995. The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology , Vol. 15, 3 (1995), 169--182. https://doi.org/10.1016/0272--4944(95)90001--2Google ScholarGoogle ScholarCross RefCross Ref
  19. Alexander Keul, Florian Hutzler, Gerlinde Frauscher, and Andreas Voigt. 2005. Architrack - Evaluating architectural preferences via eyetracker. In Designing social innovation - Planning, building, evaluating, Bob Martens and Alexander G. Keul (Eds.). Hogrefe & Huber, 750 First Street NE, Washington, 55--63.Google ScholarGoogle Scholar
  20. Izabela Krejtz, Agnieszka Szarkowska, Krzysztof Krejtz, Agnieszka Walczak, and Andrew Duchowski. 2012b. Audio description as an aural guide of children's visual attention: evidence from an eye-tracking study. In Proceedings of the symposium on eye tracking research and applications (ETRA'12). Association for Computing Machinery, Santa Barbara, California, 99--106. https://doi.org/10.1145/2168556.2168572Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Krzysztof Krejtz, Andrew Duchowski, Izabela Krejtz, Agnieszka Szarkowska, and Agata Kopacz. 2016b. Discerning ambient/focal attention with coefficient K. ACM Transactions on Applied Perception (TAP), Vol. 13, 3, Article 11 (2016), bibinfonumpages20 pages. https://doi.org/10.1145/2896452Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Krzysztof Krejtz, Andrew Duchowski, Tomasz Szmidt, Izabela Krejtz, Fernando González Perilli, Ana Pires, Anna Vilaro, and Natalia Villalobos. 2015. Gaze transition entropy. ACM Transactions on Applied Perception , Vol. 13, 1 (2015), 4. https://doi.org/10.1145/2834121Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Krzysztof Krejtz, Andrew T Duchowski, Izabela Krejtz, Agata Kopacz, and Piotr Chrz'stowski-Wachtel. 2016a. Gaze transitions when learning with multimedia. Journal of Eye Movement Research , Vol. 9, 1 (2016), 1--17. https://doi.org/10.16910/jemr.9.1.5Google ScholarGoogle ScholarCross RefCross Ref
  24. Krzysztof Krejtz, Andrew T Duchowski, Katarzyna Wisiecka, and Izabela Krejtz. 2022. Entropy of Eye Movements While Reading Code or Text. In EMIP'22. Association for Computing Machinery, Pittsburgh, PA, USA, 1--7. https://doi.org/10.1145/3524488.3527365Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Krzysztof Krejtz, Izabela Krejtz, Andrew Duchowski, Agnieszka Szarkowska, and Agnieszka Walczak. 2012a. Multimodal learning with audio description: an eye tracking study of children's gaze during a visual recognition task. In Proceedings of the ACM Symposium on Applied Perception (SAP'12). Association for Computing Machinery, Los Angeles, CA, USA, 83--90. https://doi.org/10.1145/2338676.2338694Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Krzysztof Krejtz, Tomasz Szmidt, Andrew T Duchowski, and Izabela Krejtz. 2014. Entropy-based statistical analysis of eye movement transitions. In Proceedings of the ACM Symposium on Eye Tracking Research and Applications (ETRA'14) (Safety Harbor, Florida) (ETRA '14). Association for Computing Machinery, New York, NY, USA, 159--166. https://doi.org/10.1145/2578153.2578176Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Micha? Krupa, Ma?gorzata Lisi'ska-Ku?nierz, ?ukasz Bednarz, and Alirza Mamedov. 2021. Eye-tracking study of the perception of contemporary works of architecture built in a historic cultural landscape on the example of German cities. Wiadomo?ci Konserwatorskie , Vol. Nr 66 (2021), 172 -- 181. https://doi.org/10.48234/WK66EYEGoogle ScholarGoogle Scholar
  28. Antoine Lhuillier, Christophe Hurter, and Alexandru Telea. 2017. FFTEB: Edge bundling of huge graphs by the Fast Fourier Transform. In 2017 IEEE Pacific Visualization Symposium (PacificVis). IEEE, Seoul, South Korea, 190--199. https://doi.org/10.1109/PACIFICVIS.2017.8031594Google ScholarGoogle ScholarCross RefCross Ref
  29. Ma?gorzata Lisi'ska-Ku?nierz and Micha? Krupa. 2020. Suitability of Eye Tracking in Assessing the Visual Perception of Architecture-A Case Study Concerning Selected Projects Located in Cologne. Buildings, Vol. 10, 2 (2020), 20. https://doi.org/10.3390/buildings10020020Google ScholarGoogle ScholarCross RefCross Ref
  30. Joel Martínez-Soto, Luis Alfonso de la Fuente Suárez, Leopoldo Gonzáles-Santos, and Fernando A. Barrios. 2019. Observation of environments with different restorative potential results in differences in eye patron movements and pupillary size. IBRO Reports , Vol. 7 (2019), 52--58. https://doi.org/10.1016/j.ibror.2019.07.1722Google ScholarGoogle ScholarCross RefCross Ref
  31. Matthew S. Mould, David H. Foster, Kinjiro Amano, and John P. Oakley. 2012. A simple nonparametric method for classifying eye fixations. Vision Research , Vol. 57 (2012), 18--25. https://doi.org/10.1016/j.visres.2011.12.006Google ScholarGoogle ScholarCross RefCross Ref
  32. Helena Nordh, Caroline M. Hagerhall, and Kenneth Holmqvist. 2013. Tracking Restorative Components: Patterns in Eye Movements as a Consequence of a Restorative Rating Task. Landscape Research, Vol. 38, 1 (2013), 101--116. https://doi.org/10.1080/01426397.2012.691468Google ScholarGoogle ScholarCross RefCross Ref
  33. Ralf Pacinotti. 2022. Audio describing churches: in search of a template. In The Routledge Handbook of Audio Description, Ch. Taylor and E. Perego (Eds.). Routledge, London, 246--262.Google ScholarGoogle Scholar
  34. Jonathan Peirce, Jeremy R. Gray, Sol Simpson, Michael MacAskill, Richard Höchenberger, Hiroyuki Sogo, Erik Kastman, and Jonas Kristoffer Lindeløv. 2019. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods , Vol. 51, 1 (2019), 195--203. https://doi.org/10.3758/s13428-018-01193-yGoogle ScholarGoogle ScholarCross RefCross Ref
  35. Vsevolod Peysakhovich and Christophe Hurter. 2018. Scan path visualization and comparison using visual aggregation techniques. Journal of Eye Movement Research , Vol. 10, 5 (2018), 8--10. https://doi.org/10.16910/jemr.10.5.9Google ScholarGoogle ScholarCross RefCross Ref
  36. Vsevolod Peysakhovich, Christophe Hurter, and Alexandru Telea. 2015. Attribute-driven edge bundling for general graphs with applications in trail analysis. In 2015 IEEE Pacific Visualization Symposium (PacificVis). IEEE, Hangzhou, China, 39--46. https://doi.org/10.1109/PACIFICVIS.2015.7156354Google ScholarGoogle ScholarCross RefCross Ref
  37. R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google ScholarGoogle Scholar
  38. George E. Raptis, Christos Fidas, Christina Katsini, and Nikolaos Avouris. 2019. A Cognition-Centered Personalization Framework for Cultural-Heritage Content. User Modeling and User-Adapted Interaction , Vol. 29, 1 (mar 2019), 9--65. https://doi.org/10.1007/s11257-019-09226--7Google ScholarGoogle ScholarCross RefCross Ref
  39. Marta Rusak. 2021. Eye-tracking support for architects, conservators, and museologists. Anastylosis as pretext for research and discussion. Heritage Science , Vol. 9 (2021), 1--19. https://doi.org/10.1186/s40494-021-00548--7Google ScholarGoogle Scholar
  40. Anthony Santella and Doug DeCarlo. 2004. Robust Clustering of Eye Movement Recordings for Quantification of Visual Interest. In Eye Tracking Research & Applications (ETRA) Symposium. ACM, Association for Computing Machinery, San Antonio, TX, 27--34.Google ScholarGoogle Scholar
  41. Edward Stupple, Maggie Gale, and Christopher Richmond. 2013. Working memory, cognitive miserliness and logic as predictors of performance on the cognitive reflection test. In Proceedings of the Annual Meeting of the Cognitive Science society, Vol. 35. California Digital Library, Oakland, California, 1396--1401.Google ScholarGoogle Scholar
  42. Ann Sussman and Justin B. Hollander. 2021. Cognitive architecture: Designing for how we respond to the built environment. Routledge, New York.Google ScholarGoogle Scholar
  43. Alexandru Telea and Ozan Ersoy. 2010. Image-Based Edge Bundles: Simplified Visualization of Large Graphs. Computer Graphics Forum , Vol. 29, 3 (2010), 843--852. https://doi.org/10.1111/j.1467--8659.2009.01680.xGoogle ScholarGoogle ScholarCross RefCross Ref
  44. Pieter J. A. Unema, Sebastian Pannasch, Markus Joos, and Boris M. Velichkovsky. 2005. Time course of information processing during scene perception. Visual Cognition, Vol. 12, 12(3) (2005), 473--494.Google ScholarGoogle Scholar
  45. Teija Vainio, Ilari Karppi, Ari Jokinen, and Helena Leino. 2019. Towards Novel Urban Planning Methods -- Using Eye-Tracking Systems to Understand Human Attention in Urban Environments. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA '19). Association for Computing Machinery, New York, NY, USA, 1--8. https://doi.org/10.1145/3290607.3299064Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Dirk van Moorselaar, Jan Theeuwes, and Christian NL Olivers. 2014. In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, Vol. 40, 4 (2014), 1450.Google ScholarGoogle ScholarCross RefCross Ref
  47. Boris M. Velichkovsky, Markus Joos, Jens R. Helmert, and Sebastian Pannasch. 2005. Two Visual Systems and Their Eye Movements: Evidence from Static and Dynamic Scene Perception, In CogSci 2005: Proceedings of the XXVII Conference of the Cognitive Science Society. Proceedings of the XXVII Conference of the Cognitive Science Society , Vol. 27, 2283--2288.Google ScholarGoogle Scholar
  48. Yanjun Wang, Liwei Wang, Siyuan Lin, Wei Cong, Jianfei Xue, and Washington Ochieng. 2021. Effect of Working Experience on Air Traffic Controller Eye Movement. Engineering, Vol. 7, 4 (2021), 488--494. https://doi.org/10.1016/j.eng.2020.11.006 ioGoogle ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Unified Look at Cultural Heritage: Comparison of Aggregated Scanpaths over Architectural Artifacts

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the ACM on Human-Computer Interaction
      Proceedings of the ACM on Human-Computer Interaction  Volume 7, Issue ETRA
      ETRA
      May 2023
      234 pages
      EISSN:2573-0142
      DOI:10.1145/3597645
      Issue’s Table of Contents

      Copyright © 2023 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 May 2023
      Published in pacmhci Volume 7, Issue ETRA

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader