skip to main content
10.1145/3589335.3651534acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
short-paper
Open Access

LLaCE: Locally Linear Contrastive Embedding

Authors Info & Claims
Published:13 May 2024Publication History

ABSTRACT

Node embedding is one of the most widely adopted techniques in numerous graph analysis tasks, such as node classification. Methods for node embedding can be broadly classified into three categories: proximity matrix factorization approaches, sampling methods, and deep learning strategies. Among the deep learning strategies, graph contrastive learning has attracted significant interest. Yet, it has been observed that existing graph contrastive learning approaches do not adequately preserve the local topological structure of the original graphs, particularly when neighboring nodes belong to disparate categories. To address this challenge, this paper introduces a novel node embedding approach named Locally Linear Contrastive Embedding (LLaCE). LLaCE is designed to maintain the intrinsic geometric structure of graph data by utilizing locally linear formulation, thereby ensuring that the local topological characteristics are accurately reflected in the embedding space. Experimental results on one synthetic dataset and five real-world datasets validate the effectiveness of our proposed method.

Skip Supplemental Material Section

Supplemental Material

shp0544.mp4

Supplemental video

mp4

117.4 MB

References

  1. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).Google ScholarGoogle Scholar
  2. J. Chen and G. Kou. 2023. Attribute and structure preserving graph contrastive learning. In AAAI, Vol. 37. 7024--7032.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks. In SIGKDD. 855--864.Google ScholarGoogle Scholar
  4. W. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive representation learning on large graphs. NIPS , Vol. 30 (2017).Google ScholarGoogle Scholar
  5. D. Jin, B. Zhang, Y. Song, D. He, Z. Feng, S. Chen, W. Li, and K. Musial. 2020. ModMRF: A modularity-based Markov Random Field method for community detection. Neurocomputing , Vol. 405 (2020), 218--228.Google ScholarGoogle ScholarCross RefCross Ref
  6. W. Liu, Y. Zhang, J. Wang, Y. He, J. Caverlee, P. P. K. Chan, D. S. Yeung, and P. A. Heng. 2021. Item relationship graph neural networks for e-commerce. IEEE Trans. Neural Netw. Learn. Syst. , Vol. 33, 9 (2021), 4785--4799.Google ScholarGoogle ScholarCross RefCross Ref
  7. T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).Google ScholarGoogle Scholar
  8. B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. Deepwalk: Online learning of social representations. In SIGKDD. 701--710.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Rossi, D. Barbosa, D. Firmani, A. Matinata, and P. Merialdo. 2021. Knowledge graph embedding for link prediction: A comparative analysis. TKDD, Vol. 15, 2 (2021), 1--49.Google ScholarGoogle Scholar
  10. S. T. Roweis and L. K. Saul. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, Vol. 290, 5500 (2000), 2323--2326.Google ScholarGoogle ScholarCross RefCross Ref
  11. H. Sun, F. He, J. Huang, Y. Sun, Y. Li, C. Wang, L. He, Z. Sun, and X. Jia. 2020. Network embedding for community detection in attributed networks. TKDD, Vol. 14, 3 (2020), 1--25.Google ScholarGoogle Scholar
  12. L. Torres, K. S. Chan, and T. Eliassi-Rad. 2020. GLEE: geometric Laplacian eigenmap embedding. J. Complex Netw. , Vol. 8, 2 (2020), cnaa007.Google ScholarGoogle Scholar
  13. K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. 2018. Representation learning on graphs with jumping knowledge networks. In ICML. 5453--5462.Google ScholarGoogle Scholar
  14. H. Zhang, Q. Wu, Y. Wang, S. Zhang, J. Yan, and P. S. Yu. 2022. Localized Contrastive Learning on Graphs. arXiv preprint arXiv:2212.04604 (2022).Google ScholarGoogle Scholar
  15. X. Zhang, K. Xie, S. Wang, and Z. Huang. 2021. Learning based proximity matrix factorization for node embedding. In SIGKDD. 2243--2253.Google ScholarGoogle Scholar
  16. H. Zhu and P. Koniusz. 2022. Generalized Laplacian Eigenmaps. NeurIPS , Vol. 35 (2022), 30783--30797.Google ScholarGoogle Scholar
  17. J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. 2020. Beyond homophily in graph neural networks: Current limitations and effective designs. NeurIPS , Vol. 33 (2020), 7793--7804. ioGoogle ScholarGoogle Scholar

Index Terms

  1. LLaCE: Locally Linear Contrastive Embedding

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Article Metrics

          • Downloads (Last 12 months)35
          • Downloads (Last 6 weeks)35

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader