skip to main content
10.1145/3589334.3645426acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article
Open Access
Artifacts Available / v1.1

SSI, from Specifications to Protocol? Formally Verify Security!

Published:13 May 2024Publication History

ABSTRACT

We evaluate a bundle of specifications from the Self-Sovereign Identity (SSI) paradigm to construct an authentication protocol for the Web. We demonstrate how relevant standards such as W3C Verifiable Credentials (VC), W3C Decentralised Identifiers (DIDs), and components of the Hyperledger Aries Framework are to be assembled methodologically into a protocol. We make those assumptions from standard trust models explicit that underlie the derived protocol, and verify security and privacy properties, notably secrecy, authentication, and unlinkability. This enables us to formally justify the additional precision that we urge these specifications to consider, to ensure that implementors of SSI-based systems do not neglect security-critical controls.

Skip Supplemental Material Section

Supplemental Material

rfp0643.mp4

Supplemental video

mp4

21.6 MB

References

  1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile values, new names, and secure communication. J. ACM 65(1), 1:1--1:41 (2018). https://doi.org/10.1145/3127586Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allen, C.: The path to self-sovereign identity (2016), http://www.lifewithalacrity. com/2016/04/the-path-to-self-soverereign-identity.htmlGoogle ScholarGoogle Scholar
  3. American National Standards Institute: Public key cryptography for the financial services industry: the Elliptic Curve Digital Signature Algorithm (ECDSA). X9.62, ANSI (2005)Google ScholarGoogle Scholar
  4. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using the applied pi calculus. In: Proceedings of the 23rd IEEE Computer Security Foundations Symposium (CSF). pp. 107--121 (2010). https://doi.org/10.1109/CSF.2010.15Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Biselli, A.: Konzeptionell kaputt und ein riesiger Rückschritt (2021), https:// netzpolitik.org/?p=338612Google ScholarGoogle Scholar
  6. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW). pp. 82--96 (2001)Google ScholarGoogle Scholar
  7. Blanchet, B., Cheval, V., Cortier, V.: ProVerif with lemmas, induction, fast subsumption, and much more. In: Proceedings of the 43rd IEEE Symposium on Security and Privacy (S&P). pp. 205--222 (2022). https://doi.org/10.1109/SP46214.2022.9833653Google ScholarGoogle ScholarCross RefCross Ref
  8. Boysen, A.: Decentralized, self-sovereign, consortium: The future of digital identity in Canada. Frontiers Blockchain 4, 624258 (2021)Google ScholarGoogle ScholarCross RefCross Ref
  9. Braun, C.H.J., Papanchev, V., Käfer, T.: SISSI: an architecture for semantic interoperable self-sovereign identity-based access control on the Web. In: Proceedings of the 32nd Web Conference (WWW). p. 3011--3021. ACM (2023). https://doi.org/10.1145/3543507.3583409Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: Definitions and practical constructions. In: Proceedings of the 21st International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT). pp. 262--288. Springer (2015). https://doi.org/10.1007/978--3--662--48800--3_11Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chen, J., Paxson, V., Jiang, J.: Composition kills: A case study of email sender authentication. In: Proceedings of the 29th USENIX Security Symposium (USENIX Security 20). pp. 2183--2199 (2020)Google ScholarGoogle Scholar
  12. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence properties in security protocols theory and practice. In: Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P). pp. 529--546 (2018). https://doi.org/10.1109/SP.2018.00033Google ScholarGoogle ScholarCross RefCross Ref
  13. Cremers, C., Mauw, S.: Operational Semantics and Verification of Security Protocols. Information Security and Cryptography, Springer (2012). https://doi.org/10.1007/978--3--540--78636--8Google ScholarGoogle ScholarCross RefCross Ref
  14. de Cristo, F.S., Shbair, W.M., Trestioreanu, L., State, R., Malhotra, A.: Self-Sovereign Identity for the financial sector: A case study of PayString service. In: Proceedings of the 3rd International Conference on Blockchain. pp. 213--220. IEEE (2021). https://doi.org/10.1109/Blockchain53845.2021.00036Google ScholarGoogle ScholarCross RefCross Ref
  15. Cucko, S., Turkanovic, M.: Decentralized and Self-Sovereign Identity: Systematic mapping study. IEEE Access 9, 139009--139027 (2021). https://doi.org/10.1109/ACCESS.2021.3117588Google ScholarGoogle ScholarCross RefCross Ref
  16. Curren, S., Looker, T., Terbu, O.: DIDComm messaging. Editor's draft, DIF: Decentralized Identity Foundation (2021), https://identity.foundation/didcommmessaging/ spec/Google ScholarGoogle Scholar
  17. Darnell, S.S., Sevilla, J.: 3 stages of a pan-African identity framework for establishing Self-Sovereign Identity with blockchain. Frontiers Blockchain 4, 631640 (2021)Google ScholarGoogle ScholarCross RefCross Ref
  18. Dingle, P., Hammann, S., Hardman, D., Winczewski, C., Smith, S.: Alice attempts to abuse a verifiable credential. In: White Papers from the 9th Workshop on Rebooting the Web of Trust (RWOT) (2019), https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/finaldocuments/ alice-attempts-abuse-verifiable-credential.pdfGoogle ScholarGoogle Scholar
  19. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198--208 (1983). https://doi.org/10.1109/TIT.1983.1056650Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Esposito, C., Horne, R., Robaldo, L., Buelens, B., Goesaert, E.: Assessing the solid protocol in relation to security and privacy obligations. Inf. 14(7), 411 (2023). https://doi.org/10.3390/INFO14070411Google ScholarGoogle ScholarCross RefCross Ref
  21. Freytsis, M., Barclay, I., Radha, S.K., Czajka, A., Siwo, G.H., Taylor, I.J., Bucher, S.L.: Development of a mobile, Self-Sovereign Identity approach for facility birth registration in Kenya. Frontiers Blockchain 4, 631341 (2021). https://doi.org/10.3389/fbloc.2021.631341Google ScholarGoogle ScholarCross RefCross Ref
  22. Glastra, T., Aristy, G.: Aries RFC 0453: Issue credential protocol 2.0. RFC, Hyperledger Aries Community (2021), https://github.com/hyperledger/ariesrfcs/tree/main/features/0453-issue-credential-v2Google ScholarGoogle Scholar
  23. Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: Algorithms for leaning and labelling blank nodes. ACM Trans. Web 11(4), 22:1--22:62 (2017). https://doi.org/10.1145/3068333Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Horne, R., Mauw, S.: Discovering ePassport vulnerabilities using bisimilarity. Logical Methods in Computer Science 17 (2021). https://doi.org/10.23638/LMCS-17(2:24)2021Google ScholarGoogle ScholarCross RefCross Ref
  25. Horne, R., Mauw, S., Yurkov, S.: Unlinkability of an improved key agreement protocol for EMV 2nd gen payments. In: Proceedings of the 35th IEEE Computer Security Foundations Symposium (CSF). pp. 364--379 (2022). https://doi.org/10.1109/CSF54842.2022.9919666Google ScholarGoogle ScholarCross RefCross Ref
  26. Houtan, B., Hafid, A.S., Makrakis, D.: A survey on blockchain-based Self-Sovereign patient identity in healthcare. IEEE Access 8, 90478--90494 (2020). https://doi.org/10.1109/ACCESS.2020.2994090Google ScholarGoogle ScholarCross RefCross Ref
  27. Khateev, N., Curran, S.: Aries RFC 0454: Present proof protocol 2.0. RFC, Hyperledger Aries Community (2021), https://github.com/hyperledger/aries-rfcs/blob/ main/features/0454-present-proof-v2/README.mdGoogle ScholarGoogle Scholar
  28. Kudra, A.: Self-sovereign identity (SSI) in Deutschland. Datenschutz und Datensicherheit 46(1), 22--26 (2022)Google ScholarGoogle Scholar
  29. Lodder, M., Hardman, D.: Sovrin DID method specification. Editor's draft (2023), https://sovrin-foundation.github.io/sovrin/spec/did-method-spectemplate. htmlGoogle ScholarGoogle Scholar
  30. Longley, D., Kellogg, G., Yamamoto, D.: RDF dataset canonicalization a standard RDF dataset canonicalization algorithm. Candidate recommendation draft, W3C (2023), https://www.w3.org/TR/rdf-canon/Google ScholarGoogle Scholar
  31. Longley, D., Sporny, M.: RDF dataset canonicalization. Final community group report, W3C (2022), https://www.w3.org/community/reports/credentials/CGFINAL-rdf-dataset-canonicalization-20221009/Google ScholarGoogle Scholar
  32. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. Softw. Concepts Tools 17(3), 93--102 (1996). https://doi.org/10.1007/3--540-61042--1_43Google ScholarGoogle ScholarCross RefCross Ref
  33. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings of the 10th IEEE Computer Security Foundations Workshop (CSFW). pp. 31--44 (1997). https://doi.org/10.1109/CSFW.1997.596782Google ScholarGoogle ScholarCross RefCross Ref
  34. Mahula, S., Tan, E., Crompvoets, J.: With blockchain or not? opportunities and challenges of Self-Sovereign Identity implementation in public administration: lessons from the Belgian case. In: Proceedings of the 22nd Annual International Conference on Digital Government Research (DG.O). pp. 495--504. ACM (2021). https://doi.org/10.1145/3463677.3463705Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. National Security Agency: Common Criteria for information technology security evaluation (CCMB-2017-04-002) (2017), https://www.commoncriteriaportal.org/ files/ccfiles/CCPART2V3.1R5.pdfGoogle ScholarGoogle Scholar
  36. Prorock, M., Steele, O., Terbu, O.: did:web method specification. Editor's draft (2023), https://w3c-ccg.github.io/did-method-web/Google ScholarGoogle Scholar
  37. Sambra, A.: Verifiable credentials use cases. Working group note, W3C (2019), https://www.w3.org/TR/vc-use-cases/Google ScholarGoogle Scholar
  38. Sambra, A.: Verifiable credentials implementation guidelines 1.0. Editor's draft, W3C (2023), https://w3c.github.io/vc-imp-guide/Google ScholarGoogle Scholar
  39. Sporny, M., Guy, A., Sabadello, M., Reed, D.: Decentralized Identifiers (DIDs). W3C recommendation, W3C (2022), https://www.w3.org/TR/did-core/Google ScholarGoogle Scholar
  40. Sporny, M., Longley, D., Prorock, M.: Verifiable credential data integrity 1.0: Securing the integrity of verifiable credential data. Candidate recommendation snapshot, W3C (2023), https://www.w3.org/TR/2023/CR-vc-data-integrity-20231121/Google ScholarGoogle Scholar
  41. Sporny, M., Noble, G., Longley, D., Burnett, D.C., Zundel, B., Hartog, K.D.: Verifiable credentials data model v1.1. W3C recommendation, W3C (2022), https://www.w3.org/TR/vc-data-model/Google ScholarGoogle Scholar
  42. Sporny, M., Zagidulin, D., Longley, D., Steele, O.: The did:key method v0.7. Unofficial draft (2022), https://w3c-ccg.github.io/did-method-key/Google ScholarGoogle Scholar
  43. Steele, O., Sporny, M.: DID specification registries. Note, W3C DID Working Group (2023), https://www.w3.org/TR/did-spec-registries/#did-methodsGoogle ScholarGoogle Scholar
  44. Veramo core team: ETHR DID method specification. Editor's draft (2022), https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/did-method-spec.mdGoogle ScholarGoogle Scholar
  45. West, R., Bluhm, D., Hailstone, M., Curren, S., Curran, S., Aristy, G.: Aries RFC 0023: DID exchange protocol 1.0. RFC, Hyperledger Aries Community (2021), https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-didexchange/README.mdGoogle ScholarGoogle Scholar

Index Terms

  1. SSI, from Specifications to Protocol? Formally Verify Security!

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          WWW '24: Proceedings of the ACM on Web Conference 2024
          May 2024
          4826 pages
          ISBN:9798400701719
          DOI:10.1145/3589334

          Copyright © 2024 Owner/Author

          This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 May 2024

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,899of8,196submissions,23%
        • Article Metrics

          • Downloads (Last 12 months)65
          • Downloads (Last 6 weeks)65

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader