skip to main content
10.1145/3588983.3596692acmconferencesArticle/Chapter ViewAbstractPublication PageshpdcConference Proceedingsconference-collections
extended-abstract

Quantum Reinforcement Learning for Quantum Architecture Search

Published:14 August 2023Publication History

ABSTRACT

This paper presents a quantum architecture search (QAS) framework using quantum reinforcement learning (QRL) to generate quantum gate sequences for multi-qubit GHZ states. The proposed framework employs the asynchronous advantage actor-critic (A3C) algorithm to optimize the QRL agent, which has access to Pauli-X, Y, Z expectation values and a predefined set of quantum operations. Our approach does not require any prior knowledge of quantum physics. The framework can be used with other QRL architectures or optimization methods to explore gate synthesis and compilation for various quantum states.

References

  1. Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. 2022. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, Vol. 94, 1 (2022), 015004.Google ScholarGoogle ScholarCross RefCross Ref
  2. Mahdi Chehimi and Walid Saad. 2022. Quantum federated learning with quantum data. In ICASSP 2022--2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8617--8621.Google ScholarGoogle ScholarCross RefCross Ref
  3. Chuangtao Chen, Zhimin He, Shenggen Zheng, Yan Zhou, and Haozhen Situ. 2022b. Generating the optimal structures for parameterized quantum circuits by a meta-trained graph variational autoencoder. arXiv preprint arXiv:2201.03309 (2022).Google ScholarGoogle Scholar
  4. Samuel Yen-Chi Chen. 2022. Quantum deep recurrent reinforcement learning. arXiv preprint arXiv:2210.14876 (2022).Google ScholarGoogle Scholar
  5. Samuel Yen-Chi Chen. 2023. Asynchronous training of quantum reinforcement learning. arXiv preprint arXiv:2301.05096 (2023).Google ScholarGoogle Scholar
  6. Samuel Yen-Chi Chen, Daniel Fry, Amol Deshmukh, Vladimir Rastunkov, and Charlee Stefanski. 2022a. Reservoir Computing via Quantum Recurrent Neural Networks. arXiv preprint arXiv:2211.02612 (2022).Google ScholarGoogle Scholar
  7. Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan, and Ying-Jer Kao. 2022c. Variational quantum reinforcement learning via evolutionary optimization. Machine Learning: Science and Technology, Vol. 3, 1 (2022), 015025.Google ScholarGoogle ScholarCross RefCross Ref
  8. Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, and Ying-Jer Kao. 2021. An end-to-end trainable hybrid classical-quantum classifier. Machine Learning: Science and Technology, Vol. 2, 4 (2021), 045021.Google ScholarGoogle ScholarCross RefCross Ref
  9. Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng Goan. 2020. Variational quantum circuits for deep reinforcement learning. IEEE Access, Vol. 8 (2020), 141007--141024.Google ScholarGoogle ScholarCross RefCross Ref
  10. Samuel Yen-Chi Chen and Shinjae Yoo. 2021. Federated quantum machine learning. Entropy, Vol. 23, 4 (2021), 460.Google ScholarGoogle ScholarCross RefCross Ref
  11. Samuel Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L Fang. 2022d. Quantum long short-term memory. In ICASSP 2022--2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8622--8626.Google ScholarGoogle ScholarCross RefCross Ref
  12. Riccardo Di Sipio, Jia-Hong Huang, Samuel Yen-Chi Chen, Stefano Mangini, and Marcel Worring. 2022. The dawn of quantum natural language processing. In ICASSP 2022--2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8612--8616.Google ScholarGoogle ScholarCross RefCross Ref
  13. Li Ding and Lee Spector. 2022. Evolutionary quantum architecture search for parametrized quantum circuits. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2190--2195.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Trong Duong, Sang T Truong, Minh Tam, Bao Bach, Ju-Young Ryu, and June-Koo Kevin Rhee. 2022. Quantum Neural Architecture Search with Quantum Circuits Metric and Bayesian Optimization. arXiv preprint arXiv:2206.14115 (2022).Google ScholarGoogle Scholar
  15. Thomas Fösel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li. 2021. Quantum circuit optimization with deep reinforcement learning. arXiv preprint arXiv:2103.07585 (2021).Google ScholarGoogle Scholar
  16. Zhimin He, Chuangtao Chen, Lvzhou Li, Shenggen Zheng, and Haozhen Situ. 2022a. Quantum Architecture Search with Meta-Learning. Advanced Quantum Technologies, Vol. 5, 8 (2022), 2100134.Google ScholarGoogle ScholarCross RefCross Ref
  17. Zhimin He, Junjian Su, Chuangtao Chen, Minghua Pan, and Haozhen Situ. 2022b. Search space pruning for quantum architecture search. The European Physical Journal Plus, Vol. 137, 4 (2022), 491.Google ScholarGoogle ScholarCross RefCross Ref
  18. Zhimin He, Xuefen Zhang, Chuangtao Chen, Zhiming Huang, Yan Zhou, and Haozhen Situ. 2023. A GNN-based predictor for quantum architecture search. Quantum Information Processing, Vol. 22, 2 (2023), 128.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jen-Yueh Hsiao, Yuxuan Du, Wei-Yin Chiang, Min-Hsiu Hsieh, and Hsi-Sheng Goan. 2022. Unentangled quantum reinforcement learning agents in the OpenAI Gym. arXiv preprint arXiv:2203.14348 (2022).Google ScholarGoogle Scholar
  20. Yuhan Huang, Qingyu Li, Xiaokai Hou, Rebing Wu, Man-Hong Yung, Abolfazl Bayat, and Xiaoting Wang. 2022. Robust resource-efficient quantum variational ansatz through an evolutionary algorithm. Physical Review A, Vol. 105, 5 (2022), 052414.Google ScholarGoogle ScholarCross RefCross Ref
  21. Sofiene Jerbi, Casper Gyurik, Simon Marshall, Hans J Briegel, and Vedran Dunjko. 2021. Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021).Google ScholarGoogle Scholar
  22. Tomoaki Kimura, Kodai Shiba, Chih-Chieh Chen, Masaru Sogabe, Katsuyoshi Sakamoto, and Tomah Sogabe. 2022. Quantum circuit architectures via quantum observable Markov decision process planning. Journal of Physics Communications, Vol. 6, 7 (2022), 075006.Google ScholarGoogle ScholarCross RefCross Ref
  23. En-Jui Kuo, Yao-Lung L Fang, and Samuel Yen-Chi Chen. 2021. Quantum architecture search via deep reinforcement learning. arXiv preprint arXiv:2104.07715 (2021).Google ScholarGoogle Scholar
  24. Owen Lockwood and Mei Si. 2020. Reinforcement Learning with Quantum Variational Circuit. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Vol. 16. 245--251.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nico Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel D Scherer, Axel Plinge, and Christopher Mutschler. 2022. A Survey on Quantum Reinforcement Learning. arXiv preprint arXiv:2211.03464 (2022).Google ScholarGoogle Scholar
  26. Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. 2018. Quantum circuit learning. Physical Review A, Vol. 98, 3 (2018), 032309.Google ScholarGoogle ScholarCross RefCross Ref
  27. Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information.Google ScholarGoogle Scholar
  28. Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran Dunjko. 2021. Reinforcement learning for optimization of variational quantum circuit architectures. Advances in Neural Information Processing Systems, Vol. 34 (2021), 18182--18194.Google ScholarGoogle Scholar
  29. Jun Qi, Chao-Han Huck Yang, and Pin-Yu Chen. 2021. Qtn-vqc: An end-to-end learning framework for quantum neural networks. arXiv preprint arXiv:2110.03861 (2021).Google ScholarGoogle Scholar
  30. André Sequeira, Luis Paulo Santos, and Luis Soares Barbosa. 2023. Policy gradients using variational quantum circuits. Quantum Machine Intelligence, Vol. 5, 1 (2023), 18.Google ScholarGoogle ScholarCross RefCross Ref
  31. Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. 2022. Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum, Vol. 6 (2022), 720.Google ScholarGoogle Scholar
  32. Tomah Sogabe, Tomoaki Kimura, Chih-Chieh Chen, Kodai Shiba, Nobuhiro Kasahara, Masaru Sogabe, and Katsuyoshi Sakamoto. 2022. Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design. Quantum Reports, Vol. 4, 4 (2022), 380--389.Google ScholarGoogle ScholarCross RefCross Ref
  33. Peiyong Wang, Muhammad Usman, Udaya Parampalli, Lloyd CL Hollenberg, and Casey R Myers. 2023. Automated quantum circuit design with nested monte carlo tree search. IEEE Transactions on Quantum Engineering (2023).Google ScholarGoogle Scholar
  34. Rudai Yan, Yu Wang, Yan Xu, and Jiahong Dai. 2022. A Multiagent Quantum Deep Reinforcement Learning Method for Distributed Frequency Control of Islanded Microgrids. IEEE Transactions on Control of Network Systems, Vol. 9, 4 (2022), 1622--1632.Google ScholarGoogle ScholarCross RefCross Ref
  35. Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Pin-Yu Chen, Sabato Marco Siniscalchi, Xiaoli Ma, and Chin-Hui Lee. 2021. Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition. In ICASSP 2021--2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 6523--6527.Google ScholarGoogle Scholar
  36. Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Yu Tsao, and Pin-Yu Chen. 2022. When BERT Meets Quantum Temporal Convolution Learning for Text Classification in Heterogeneous Computing. In ICASSP 2022--2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8602--8606.Google ScholarGoogle Scholar
  37. Jiahao Yao, Haoya Li, Marin Bukov, Lin Lin, and Lexing Ying. 2022. Monte carlo tree search based hybrid optimization of variational quantum circuits. In Mathematical and Scientific Machine Learning. PMLR, 49--64.Google ScholarGoogle Scholar
  38. Esther Ye and Samuel Yen-Chi Chen. 2021. Quantum Architecture Search via Continual Reinforcement Learning. arXiv preprint arXiv:2112.05779 (2021).Google ScholarGoogle Scholar
  39. Won Joon Yun, Jihong Park, and Joongheon Kim. 2022. Quantum multi-agent meta reinforcement learning. arXiv preprint arXiv:2208.11510 (2022).Google ScholarGoogle Scholar

Index Terms

  1. Quantum Reinforcement Learning for Quantum Architecture Search

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          QCCC '23: Proceedings of the 2023 International Workshop on Quantum Classical Cooperative
          August 2023
          34 pages
          ISBN:9798400701627
          DOI:10.1145/3588983
          • General Chairs:
          • Qiang Guan,
          • Bo Fang,
          • Program Chairs:
          • Ying Mao,
          • Weiwen Jiang

          Copyright © 2023 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 August 2023

          Check for updates

          Qualifiers

          • extended-abstract

          Upcoming Conference

        • Article Metrics

          • Downloads (Last 12 months)238
          • Downloads (Last 6 weeks)14

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader