skip to main content
10.1145/3588015.3588421acmconferencesArticle/Chapter ViewAbstractPublication PagesetraConference Proceedingsconference-collections
research-article
Open Access

Visual Center Biasing in a Stimulus-Free Laboratory Setting

Published:30 May 2023Publication History

ABSTRACT

Looking at nothing has recently become of particular interest as it may reveal insights into the nature of spatial cognition in terms of integrated mental representations from visual and auditory input. The current study applies individual time sensitive and emotional ideas to quantify visuo-spatial biases in a stimulus-free laboratory setting. We observe a strong visual bias across all experimental conditions supporting earlier assumptions of a screen center or motor bias. The tendency towards the center was particular evident during trials that lack any specific assignment. A time-sensitive differentiation of eye movements with regards to memory and anticipation tasks could not be recorded. Also, pupil diameter indicated no relationship between changes in bodily arousal and spontaneous fixation behavior. In addition, we replicate a strong left side gaze asymmetry that is interwoven with the center bias featuring spontaneous fixations to mainly cluster left from the screen center.

References

  1. Borji, A., & Itti, L. (2012). State-of-the-art in visual attention modeling. IEEE transactions on pattern analysis and machine intelligence, 35(1), 185-207.Google ScholarGoogle Scholar
  2. Bradley, M. M., Miccoli, L., Escrig, M. A.,& Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602-607.Google ScholarGoogle ScholarCross RefCross Ref
  3. Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of cognitive neuroscience, 9(1), 27-38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Butler, S., Gilchrist, I. D., Burt, D. M., Perrett, D. I., Jones, E., & Harvey, M. (2005). Are the perceptual biases found in chimeric face processing reflected in eye-movement patterns?. Neuropsychologia, 43(1), 52-59.Google ScholarGoogle ScholarCross RefCross Ref
  5. Connor, C. E., Egeth, H. E., & Yantis, S. (2004). Visual attention: bottom-up versus top-down. Current biology, 14(19), R850-R852.Google ScholarGoogle Scholar
  6. Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of vision, 10(10), 28-28.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ehlers, J. (2020). Exploring the effect of transient cognitive load on bodily arousal and secondary task performance. In Proceedings of the Conference on Mensch und Computer (pp. 7-10).Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ehlers, J., Strauch, C., Georgi, J., & Huckauf, A. (2016). Pupil size changes as an active information channel for biofeedback applications. Applied psychophysiology and biofeedback, 41(3), 331-339.Google ScholarGoogle Scholar
  9. Ehlers, J., Strauch, C., & Huckauf, A. (2018). A view to a click: Pupil size changes as input command in eyes-only human-computer interaction. International journal of human-computer studies, 119, 28-34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ferreira, F., Apel, J., & Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends in cognitive sciences, 12(11), 405-410.Google ScholarGoogle Scholar
  11. Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. Quarterly journal of experimental psychology, 67(8), 1461-1483.Google ScholarGoogle Scholar
  12. Grimmer, J., Simon, L., & Ehlers, J. (2021). The cognitive eye: Indexing oculomotor functions for mental workload assessment in cognition-aware systems. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-6).Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic bulletin & review, 12(5), 822-851.Google ScholarGoogle Scholar
  14. Hannula, D. E., Althoff, R. R., Warren, D. E., Riggs, L., Cohen, N. J., & Ryan, J. D. (2010). Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Frontiers in human neuroscience, 4, 166.Google ScholarGoogle Scholar
  15. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: Evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hartmann, M., & Fischer, M. H. (2016). Exploring the numerical mind by eye-tracking: a special issue. Psychological Research, 80(3), 325-333.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 194-203.Google ScholarGoogle Scholar
  20. JASP, T. (2020). JASP (Version 0.12. 2)[computer software]. Eric-Jan Wagenmakers, University of Amsterdam: Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  21. Laeng, B., & Teodorescu, D. S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26(2), 207-231.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lang, P. J. (2016). Imagery in therapy: an information processing analysis of fear–republished article. Behavior Therapy, 47(5), 688-701.Google ScholarGoogle ScholarCross RefCross Ref
  23. Leonards, U., & Scott-Samuel, N. E. (2005). Idiosyncratic initiation of saccadic face exploration in humans. Vision research, 45(20), 2677-2684.Google ScholarGoogle Scholar
  24. Marat, S., Rahman, A., Pellerin, D., Guyader, N., & Houzet, D. (2013). Improving visual saliency by adding ‘face feature map'and ‘center bias’. Cognitive Computation, 5(1), 63-75.Google ScholarGoogle ScholarCross RefCross Ref
  25. McKinney, W., & others. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference (Vol. 445, No. 1, pp. 51–56).Google ScholarGoogle ScholarCross RefCross Ref
  26. Nicholls, M. E., & Roberts, G. R. (2002). Can free-viewing perceptual asymmetries be explained by scanning, pre-motor or attentional biases?. Cortex, 38(2), 113-136.Google ScholarGoogle ScholarCross RefCross Ref
  27. Noudoost, B., Chang, M. H., Steinmetz, N. A., & Moore, T. (2010). Top-down control of visual attention. Current opinion in neurobiology, 20(2), 183-190.Google ScholarGoogle Scholar
  28. Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International journal of human-computer studies, 59(1-2), 185-198.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pitt, B., & Casasanto, D. (2016). Reading experience shapes the mental timeline but not the mental number line. In CogSci.Richardson, D. C., & Spivey, M. J. (2000). Representation, space and Hollywood Squares: Looking at things that aren't there anymore. Cognition, 76(3), 269-295.Google ScholarGoogle Scholar
  30. Prasad, S., & Galetta, S. L. (2011). Anatomy and physiology of the afferent visual system. Handbook of clinical neurology, 102, 3-19.Google ScholarGoogle Scholar
  31. Richardson, D. C., Altmann, G. T., Spivey, M. J., & Hoover, M. A. (2009). Much ado about eye movements to nothing: A response to Ferreira : Taking a new look at looking at nothing. Trends in Cognitive Sciences, 13(6), 235-236.Google ScholarGoogle ScholarCross RefCross Ref
  32. Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of vision, 7(14), 4-4.Google ScholarGoogle ScholarCross RefCross Ref
  33. Tillman, K. A., Tulagan, N., Fukuda, E., & Barner, D. (2018). The mental timeline is gradually constructed in childhood. Developmental science, 21(6), e12679.Google ScholarGoogle Scholar
  34. Treue, S. (2003). Visual attention: the where, what, how and why of saliency. Current opinion in neurobiology, 13(4), 428-432.Google ScholarGoogle Scholar
  35. Tseng, P. H., Carmi, R., Cameron, I. G., Munoz, D. P., & Itti, L. (2009). Quantifying center bias of observers in free viewing of dynamic natural scenes. Journal of vision, 9(7), 4-4.Google ScholarGoogle ScholarCross RefCross Ref
  36. Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.Google ScholarGoogle Scholar
  38. Wilson, S. (2020). Miceforest. https://pypi.org/project/miceforest/2.0.3/#flesGoogle ScholarGoogle Scholar

Index Terms

  1. Visual Center Biasing in a Stimulus-Free Laboratory Setting

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ETRA '23: Proceedings of the 2023 Symposium on Eye Tracking Research and Applications
      May 2023
      441 pages
      ISBN:9798400701504
      DOI:10.1145/3588015

      Copyright © 2023 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 May 2023

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate69of137submissions,50%

      Upcoming Conference

      ETRA '24
      The 2024 Symposium on Eye Tracking Research and Applications
      June 4 - 7, 2024
      Glasgow , United Kingdom
    • Article Metrics

      • Downloads (Last 12 months)123
      • Downloads (Last 6 weeks)14

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format