skip to main content
10.1145/3564246.3585207acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Parallel Discrete Sampling via Continuous Walks

Published:02 June 2023Publication History

ABSTRACT

We develop a framework for sampling from discrete distributions µ on the hypercube {± 1}n by sampling from continuous distributions supported on ℝn obtained by convolution with spherical Gaussians. We show that for well-studied families of discrete distributions µ, the result of the convolution is well-conditioned log-concave, whenever the Gaussian’s variance is above an O(1) threshold. We plug off-the-shelf continuous sampling methods into our framework to obtain novel discrete sampling algorithms. Additionally, we introduce and study a crucial notion of smoothness for discrete distributions that we call transport stability, which we use to control the propagation of error in our framework. We expect transport stability to be of independent interest, as we connect it to constructions of optimally mixing local random walks and concentration inequalities. As our main application, we resolve open questions raised by Anari, Hu, Saberi, and Schild on the parallel sampling of distributions which admit parallel counting. We show that determinantal point processes can be sampled via RNC algorithms, that is in time log(n)O(1) using nO(1) processors. For a wider class of distributions, we show our framework yields Quasi-RNC sampling, i.e., log(n)O(1) time using nO(logn) processors. This wider class includes non-symmetric determinantal point processes and random Eulerian tours in digraphs, the latter nearly resolving another open question raised by prior work.

References

  1. David J. Aldous. 1990. The random walk construction of uniform spanning trees and uniform labelled treeSsI. AM J. Discrete Math., 3, 4, 450-465. https://d oi. org/10.1137/0403039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong. © 2021. Fractionally log-concave and sector-stable polynomials: counting planar matchings and more. ISnTOC '21-Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York, 433-446. https://doi.org/10.1145/3406325.3451123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nima Anari, Callum Burgess, Kevin Tian, and Thuy-Duong Vuong. 2022. Quadratic speedups in parallel sampling from determinantal distributions. ( 2022 ). arXiv:2203.11190 [cs.DS]. Google ScholarGoogle Scholar
  4. Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild. 2021. Sampling arborescences in parallel. I1n2th Innovations in Theoretical Computer Science Conference. LIPIcs. Leibniz Int. Proc. Inform. Vol. 185. Schloss Dagstuhl. LeibnizZent. Inform., Wadern, Art. No. 83, 18h.ttps://doi.org/10.4230/LIPIcs.ITCS. 202 1.83. Google ScholarGoogle Scholar
  5. Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong. © 2022. Entropic independence: optimal mixing of down-up random walks. InSTOC '22-Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York, 1418-1430.https://doi.o rg/10.1145/3519935.3520048. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Awerbuch, A. Israeli, and Y. Shiloach. 1984. Finding euler circuits in logarithmic parallel time. InProceedings of the Sixteenth Annual ACM Symposium on Theory of Computing (STOC '84). Association for Computing Machinery, New York, NY, USA, 249-257.isbn: 0897911334. https://doi.org/10.1145/800057.808688. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Julius Borcea, Peter Brändén, and Thomas M. Ligget. 2009. Negative dependence and the geometry of polynomialJs. Amer. Math. Soc., 22, 2, 521-567. https://doi.org/10.1090/S0894-0347-08-00618-8. Google ScholarGoogle ScholarCross RefCross Ref
  8. André Bouchet. 1995. Coverings and delta-coverings. IInnteger programming and combinatorial optimization (Copenhagen, 1995 ). Lecture Notes in Comput. Sci. Vol. 920. Springer, Berlin, 228-243 https://doi.org/10.1007/3-540-59408-6_54. Google ScholarGoogle Scholar
  9. Peter Brändén. 2007. Polynomials with the half-plane property and matroid theory. Adv. Math., 216, 1, 302-320. https://doi.org/10.1016/j.aim. 2007. 05.011. Google ScholarGoogle ScholarCross RefCross Ref
  10. Graham R. Brightwell and Peter Winkler. 2005. Counting eulerian circuits is #p-complete. In Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics, ALENEX /ANALCO 2005, Vancouver, BC, Canada, 22 January 2005. Camil Demetrescu, Robert Sedgewick, and Roberto Tamassia, (Eds.) SIAM, 259-262. Google ScholarGoogle Scholar
  11. A. Broder. 1989. Generating random spanning trees. PIrnoceedings of the 30th Annual Symposium on Foundations of Computer Science (SFCS '89). IEEE Computer Society, USA, 442-447.isbn: 0818619821. https://doi.org/10.1109 /SFCS. 1989. 63516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria, and Nisheeth Vishnoi. 2018. Fair and diverse DPP-based data summarization. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research). Jennifer Dy and Andreas Krause, (Eds.) Vol. 80. PMLR, (Oct. 2018 ), 716-725. Google ScholarGoogle Scholar
  13. S. Chaiken and D. J. Kleitman. 1978. Matrix tree theoremJs.. Combinatorial hTeory Ser. A, 24, 3, 377-381. https://doi.org/10.1016/ 0097-3165 ( 78 ) 90067-5. Google ScholarGoogle ScholarCross RefCross Ref
  14. Yuansi Chen and Ronen Eldan. © 2022. Localization schemes: a framework for proving mixing bounds for Markov chains2. 0I2n2 IEEE 63rd Annual Symposium on Foundations of Computer Science-FOCS 2022. IEEE Computer Soc., Los Alamitos, CA, 110-122.https://doi.org/10.1109/FOCS54457. 2022. 0001 8. Google ScholarGoogle ScholarCross RefCross Ref
  15. L. Csanky. 1976. Fast parallel matrix inversion algorithSmIsA. M J. Comput., 5, 4, 618-623. https://doi.org/10.1137/0205040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Michael W. Dereziński Michałand Mahoney. 2021. Determinantal point processes in randomized numerical linear algebrNao. tices Amer. Math. Soc., 68, 1, 34-45. https://doi.org/10.1090/noti220.2 Martin Dyer, Alan Frieze, and Ravi Kannan. 1991. A random polynomial-time algorithm for approximating the volume of convex bodiJe. sA. ssoc. Comput. Mach., 38, 1, 1-17. https://doi.org/10.1145/102782.102783. Google ScholarGoogle Scholar
  17. Martin Dyer, Alan Frieze, and Ravi Kannan. 1991. A random polynomial-time algorithm for approximating the volume of convex bodies. J. Assoc. Comput. Mach., 38, 1, 1–17. https://doi.org/10.1145/102782.102783. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. 2004. Counting and sampling H-colourings. Inform. and Comput., 189, 1, 1–16. https://doi.org/10.1016/j.ic.2003.09.001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ahmed El Alaoui and Andrea Montanari. 2022. An information-theoretic view of stochastic localizatio nIE. EE Trans. Inform. Theory, 68, 11, 7423-7426. https: //doi.org/10.1109/TIT. 2022. 3180298. Google ScholarGoogle ScholarCross RefCross Ref
  20. Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. ©2022. Sampling from the Sherrington-Kirkpatrick Gibbs measure via algorithmic stochastic localization. In2022 IEEE 63rd Annual Symposium on Foundations of Computer Science-FOCS 2022. IEEE Computer Soc., Los Alamitos, CA, 323-334.https://d oi. org/10.1109/FOCS54457. 2022. 00038. Google ScholarGoogle ScholarCross RefCross Ref
  21. Ronen Eldan. 2013. Thin shell implies spectral gap up to polylog via a stochastic localization schemeG.eom. Funct. Anal., 23, 2, 532-569. https://doi.org/10.1007 /s00039-013-0214-y. Google ScholarGoogle ScholarCross RefCross Ref
  22. Ronen Eldan, James R. Lee, and Joseph Lehec. 2017. Transport-entropy inequalities and curvature in discrete-space Markov chainsA. Ijnourney through discrete mathematics. Springer, Cham, 391-406.https://doi.org/10.1007/978-3-3 19-44479-6_16. Google ScholarGoogle ScholarCross RefCross Ref
  23. Ronen Eldan and Omer Shamir. 2022. Log concavity and concentration of Lipschitz functions on the Boolean hypercubJ. eF.unct. Anal., 282, 8, Paper No. 109392, 22. https://doi.org/10.1016/j.jfa.2022.109392 Google ScholarGoogle ScholarCross RefCross Ref
  24. Weiming Feng, Thomas P. Hayes, and Yitong Yin. 2021. Distributed metrop- olis sampler with optimal parallelism. InProceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA, 2121-2140 https://doi.org/10.1137/1.9781611976465.127. Google ScholarGoogle ScholarCross RefCross Ref
  25. Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, and Syrine Krichene. 2019. Learning nonsymmetric determinantal point processes. AIdnvances in Neural Information Processing Systems. H. Wallach, H. Larochelle, A. Beygelz- imer, F. d' Alché-Buc, E. Fox, and R. Garnet, (Eds.) Vol. 32. Curran Associates, Inc. Google ScholarGoogle Scholar
  26. Qi Ge and Daniel Štefankovič. 2012. The complexity of counting Eulerian tours in 4-regular graphsA.lgorithmica, 63, 3, 588-601. https://doi.org/10.1007/s0045 3-010-9463-4. Google ScholarGoogle ScholarCross RefCross Ref
  27. Jonathan Hermon and Justin Salez. 2023. Modified log-Sobolev inequalities for strong-Rayleigh measuresA. nn. Appl. Probab., 33, 2, 1301-1314. https://doi.org /10.1214/ 22-aap1847. Google ScholarGoogle ScholarCross RefCross Ref
  28. Mark Jerrum, Alistair Sinclair, and Eric Vigoda. 2004. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51, 4, 671-697. https://doi.org/10.1145/1008731.1008738. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci., 43, 2-3, 169-188. https://doi.org/10.1016/ 0304-3975 ( 86 ) 90174-X. Google ScholarGoogle ScholarCross RefCross Ref
  30. P. W. Kasteleyn. 1963. Dimer statistics and phase transitioJn. sM.athematical Phys., 4, 287-293. https://doi.org/10.1063/1.1703953. Google ScholarGoogle ScholarCross RefCross Ref
  31. Alex Kulesza and Ben Taskar. 2012. Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning, 5, 2-3, 123-286. https: //doi.org/10.1561/2200000044. Google ScholarGoogle ScholarCross RefCross Ref
  32. Hongyang Liu and Yitong Yin. ©2022. Simple parallel algorithms for single-site dynamics. InSTOC '22-Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York, 1431-1444.https://doi.o rg/10.1145/3519935.3519999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Robin Pemantle and Yuval Peres. 2014. Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measuCreosm. bin. Probab. Comput., 23, 1, 140-160. https://doi.org/10.1017/S0963548313000345. Google ScholarGoogle ScholarCross RefCross Ref
  34. Ruoqi Shen and Yin Tat Lee. 2019. The randomized midpoint method for logconcave sampling. InAdvances in Neural Information Processing Systems. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnet, (Eds.) Vol. 32. Curran Associates, Inc. Google ScholarGoogle Scholar
  35. H. N. V. Temperley and Michael E. Fisher. 1961. Dimer problem in statistical mechanics-an exact resultP. hilos. Mag. (8), 6, 1061-1063. https://doi.org/10.10 80/14786436108243366. Google ScholarGoogle ScholarCross RefCross Ref
  36. Shang-Hua Teng. 1995. Independent sets versus perfect matchings. Theoret. Comput. Sci., 145, 1-2, 381-390. https://doi.org/10.1016/ 0304-3975 ( 94 ) 00289-U. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. W. T. Tute and C. A. B. Smith. 1941. On Unicursal Paths in a Network of Degree 4. Amer. Math. Monthly, 48, 4, 233-237. https://doi.org/10.2307/2302716. Google ScholarGoogle ScholarCross RefCross Ref
  38. T. van Aardenne-Ehrenfest and N. G. de Bruijn. 1951. Circuits and trees in oriented linear graphSsi. mon Stevin, 28, 203-217. Google ScholarGoogle Scholar

Index Terms

  1. Parallel Discrete Sampling via Continuous Walks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
        June 2023
        1926 pages
        ISBN:9781450399135
        DOI:10.1145/3564246

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 June 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,469of4,586submissions,32%

        Upcoming Conference

        STOC '24
        56th Annual ACM Symposium on Theory of Computing (STOC 2024)
        June 24 - 28, 2024
        Vancouver , BC , Canada
      • Article Metrics

        • Downloads (Last 12 months)559
        • Downloads (Last 6 weeks)59

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader