skip to main content
10.1145/3539597.3570444acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Public Access

Stochastic Solutions for Dense Subgraph Discovery in Multilayer Networks

Published:27 February 2023Publication History

ABSTRACT

Network analysis has played a key role in knowledge discovery and data mining. In many real-world applications in recent years, we are interested in mining multilayer networks, where we have a number of edge sets called layers, which encode different types of connections and/or time-dependent connections over the same set of vertices. Among many network analysis techniques, dense subgraph discovery, aiming to find a dense component in a network, is an essential primitive with a variety of applications in diverse domains. In this paper, we introduce a novel optimization model for dense subgraph discovery in multilayer networks. Our model aims to find a stochastic solution, i.e., a probability distribution over the family of vertex subsets, rather than a single vertex subset, whereas it can also be used for obtaining a single vertex subset. For our model, we design an LP-based polynomial-time exact algorithm. Moreover, to handle large-scale networks, we also devise a simple, scalable preprocessing algorithm, which often reduces the size of the input networks significantly and results in a substantial speed-up. Computational experiments demonstrate the validity of our model and the effectiveness of our algorithms.

Skip Supplemental Material Section

Supplemental Material

WSDM23-fp0482.mp4

mp4

23.4 MB

References

  1. A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. 2012. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. In Proceedings of VLDB. 574--585.Google ScholarGoogle Scholar
  2. T. Bacsar and G. J. Olsder. 1999. Dynamic Noncooperative Game Theory. Classics in Applied Mathematics, Vol. 23. SIAM.Google ScholarGoogle Scholar
  3. G. D. Bader and C. W. V. Hogue. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, Vol. 4, 1 (2003), 1--27.Google ScholarGoogle ScholarCross RefCross Ref
  4. O. D. Balalau, F. Bonchi, T-H. H. Chan, F. Gullo, and M. Sozio. 2015. Finding subgraphs with maximum total density and limited overlap. In Proceedings of WSDM. 379--388.Google ScholarGoogle Scholar
  5. P. Basaras, G. Iosifidis, D. Katsaros, and L. Tassiulas. 2019. Identifying influential spreaders in complex multilayer networks: A centrality perspective. IEEE Transactions on Network Science and Engineering, Vol. 6, 1 (2019), 31--45.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Bazzi, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S. D. Howison. 2016. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Modeling & Simulation, Vol. 14, 1 (2016), 1--41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin. 2014. The structure and dynamics of multilayer networks. Physics Reports, Vol. 544, 1 (2014), 1--122.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. Boob, Y. Gao, R. Peng, S. Sawlani, C. E. Tsourakakis, D. Wang, and J. Wang. 2020. Flowless: Extracting densest subgraphs without flow computations. In Proceedings of The Web Conference 2020. 573--583.Google ScholarGoogle Scholar
  9. M. Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In Proceedings of APPROX. 84--95.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Charikar, Y. Naamad, and J. Wu. 2018. On finding dense common subgraphs. arXiv preprint arXiv:1802.06361 (2018).Google ScholarGoogle Scholar
  11. C. Chekuri, K. Quanrud, and M. R. Torres. 2022. Densest subgraph: Supermodularity, iterative peeling, and flow. In Proceedings of SODA. 1531--1555.Google ScholarGoogle Scholar
  12. F. Chung and L. Lu. 2002. The average distances in random graphs with given expected degrees. Internet Mathematics, Vol. 1 (2002), 15879--15882.Google ScholarGoogle Scholar
  13. C. De Bacco, E. A. Power, D. B. Larremore, and C. Moore. 2017. Community detection, link prediction, and layer interdependence in multilayer networks. Physical Review E, Vol. 95 (2017), 042317.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. De Domenico, C. Granell, M. A. Porter, and A. Arenas. 2016. The physics of spreading processes in multilayer networks. Nature Physics, Vol. 12, 10 (2016), 901--906.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivel"a, Y. Moreno, M. A. Porter, S. Gómez, and A. Arenas. 2013. Mathematical formulation of multilayer networks. Physical Review X, Vol. 3 (2013), 041022.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and A. Arenas. 2015. Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, Vol. 6 (2015), 6868.Google ScholarGoogle ScholarCross RefCross Ref
  17. Y. Dourisboure, F. Geraci, and M. Pellegrini. 2007. Extraction and classification of dense communities in the web. In Proceedings of WWW. 461--470.Google ScholarGoogle Scholar
  18. J. A. Firth and B. C. Sheldon. 2015. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proceedings of the Royal Society B: Biological Sciences, Vol. 282, 1802 (2015), 20142350.Google ScholarGoogle ScholarCross RefCross Ref
  19. K. J. Friston. 2011. Functional and effective connectivity: A review. Brain Connectivity, Vol. 1, 1 (2011), 13--36.Google ScholarGoogle ScholarCross RefCross Ref
  20. E. Galimberti, F. Bonchi, and F. Gullo. 2017. Core decomposition and densest subgraph in multilayer networks. In Proceedings of CIKM. 1807--1816.Google ScholarGoogle Scholar
  21. D. Gibson, R. Kumar, and A. Tomkins. 2005. Discovering large dense subgraphs in massive graphs. In Proceedings of VLDB. 721--732.Google ScholarGoogle Scholar
  22. A. Gionis and C. E. Tsourakakis. 2015. Dense subgraph discovery: KDD 2015 Tutorial. In Proceedings of KDD. 2313--2314.Google ScholarGoogle Scholar
  23. A. V. Goldberg. 1984. Finding a maximum density subgraph. Technical Report. University of California Berkeley.Google ScholarGoogle Scholar
  24. F. Hashemi, A. Behrouz, and L. V.S. Lakshmanan. 2022. FirmCore decomposition of multilayer networks. In Proceedings of The Web Conference. 1589--1600.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry, and P. Poncelet. 2017. Local community detection in multilayer networks. Data Mining and Knowledge Discovery, Vol. 31, 5 (2017), 1444--1479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Jalili, Y. Orouskhani, M. Asgari, N. Alipourfard, and M. Perc. 2017. Link prediction in multiplex online social networks. Royal Society Open Science, Vol. 4, 2 (2017), 160863.Google ScholarGoogle ScholarCross RefCross Ref
  27. V. Jethava and N. Beerenwinkel. 2015. Finding dense subgraphs in relational graphs. In Proceedings of ECML PKDD. 641--654.Google ScholarGoogle Scholar
  28. Y. Kawase, Y. Kuroki, and A. Miyauchi. 2019. Graph mining meets crowdsourcing: Extracting experts for answer aggregation. In Proceedings of IJCAI. 1272--1279.Google ScholarGoogle Scholar
  29. Y. Kawase and A. Miyauchi. 2018. The densest subgraph problem with a convex/concave size function. Algorithmica, Vol. 80, 12 (2018), 3461--3480.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter. 2014. Multilayer networks. Journal of Complex Networks, Vol. 2, 3 (2014), 203--271.Google ScholarGoogle ScholarCross RefCross Ref
  31. G. Kortsarz and D. Peleg. 1994. Generating sparse 2-spanners. Journal of Algorithms, Vol. 17, 2 (1994), 222--236.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. 2010. A survey of algorithms for dense subgraph discovery. 303--336.Google ScholarGoogle Scholar
  33. J. Leskovec, J. Kleinberg, and C. Faloutsos. 2005. Graphs over time: Densification laws, shrinking diameters and possible explanations. In Proceedings of KDD. 177--187.Google ScholarGoogle Scholar
  34. A. Miyauchi and N. Kakimura. 2018. Finding a dense subgraph with sparse cut. In Proceedings of CIKM. 547--556.Google ScholarGoogle Scholar
  35. A. Miyauchi and A. Takeda. 2018. Robust densest subgraph discovery. In Proceedings of ICDM. 1188--1193.Google ScholarGoogle Scholar
  36. E. Omodei, M. De Domenico, and A. Arenas. 2015. Characterizing interactions in online social networks during exceptional events. Frontiers in Physics, Vol. 3 (2015), 59.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Salehi, R. Sharma, M. Marzolla, M. Magnani, P. Siyari, and D. Montesi. 2015. Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, Vol. 2, 2 (2015), 65--83.Google ScholarGoogle ScholarCross RefCross Ref
  38. K. Semertzidis, E. Pitoura, E. Terzi, and P. Tsaparas. 2019. Finding lasting dense subgraphs. Data Mining and Knowledge Discovery, Vol. 33, 5 (2019), 1417--1445.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Tagarelli, A. Amelio, and F. Gullo. 2017. Ensemble-based community detection in multilayer networks. Data Mining and Knowledge Discovery, Vol. 31, 5 (2017), 1506--1543.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. C. E. Tsourakakis. 2015. The k-clique densest subgraph problem. In Proceedings of WWW. 1122--1132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. C. E. Tsourakakis, T. Chen, N. Kakimura, and J. Pachocki. 2019. Novel dense subgraph discovery primitives: Risk aversion and exclusion queries. In Proceedings of ECML PKDD. 378--394.Google ScholarGoogle Scholar
  42. R. J. Vanderbei. 2020. Linear Programming: Foundations and Extensions. International Series in Operations Research & Management Science, Vol. 196. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  43. N. Veldt, A. R. Benson, and J. Kleinberg. 2021. The generalized mean densest subgraph problem. In Proceedings of KDD. 1604--1614.Google ScholarGoogle Scholar
  44. Z. Zou. 2013. Polynomial-time algorithm for finding densest subgraphs in uncertain graphs. In Proceedings of MLG. No page numbers.Google ScholarGoogle Scholar

Index Terms

  1. Stochastic Solutions for Dense Subgraph Discovery in Multilayer Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        WSDM '23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining
        February 2023
        1345 pages
        ISBN:9781450394079
        DOI:10.1145/3539597

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 February 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate498of2,863submissions,17%

        Upcoming Conference

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader