skip to main content
10.1145/3493842.3493904acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaciConference Proceedingsconference-collections
extended-abstract

Into the Wild: Into the Wild: Opportunities and Challenges for Animal-Computer Interaction in Wildlife Conservation

Published:18 May 2022Publication History

ABSTRACT

The field of Animal-Computer Interaction (ACI) has emerged alongside the increasing adoption of digital technologies for wildlife conservation and concern for wild animal welfare. To date, there have been relatively few applications of ACI to free-living wildlife, but the use of camera traps, unmanned aerial vehicles (UAVs), and other digital devices offers opportunities for ACI research in this space. This paper identifies potential benefits of applications of ACI research and methodologies toward conservation technology, as well as challenges that represent directions for future research within the field of ACI.

Skip Supplemental Material Section

Supplemental Material

Poster_Into_the_Wild.mp4

mp4

85 MB

References

  1. Ben A. Minteer and James P. Collins. 2013. Ecological Ethics in Captivity: Balancing Values and Responsibilities in Zoo and Aquarium Research under Rapid Global Change. ILAR Journal, 54(1), (2013.) 41-51. DOI: https://doi.org/10.1093/ilar/ilt009Google ScholarGoogle Scholar
  2. Chris Sandbrook, Ivan R. Scales, Bhaskar Vira, William M Adams. 2010. Value Plurality among Conservation Professionals. Conservation Biology, (Oct. 2010). DOI: https://doi.org/10.1111/j.1523-1739.2010.01592.xGoogle ScholarGoogle ScholarCross RefCross Ref
  3. Georgina M. Macine. 2014. Whose conservation? Science, 345(6204), (2014), 1558-1560. DOI: https://doi.org/10.1126/science.1254704Google ScholarGoogle Scholar
  4. Koen Arts, René van der Wal, and William M. Adams. 2015. Digital technology and the conservation of nature. Ambio, 44, (Oct. 2015), 661-673. DOI: https://doi.org/10.1007/s13280-015-0705-1Google ScholarGoogle Scholar
  5. René van der Wal and Koen Arts. 2015. Digital conservation: An introduction. Ambio, 44, (Oct. 2015), 517-521. DOI: https://doi.org/10.1007/s13280-015-0701-5Google ScholarGoogle Scholar
  6. SCB. Society for Conservation Biology: Conservation Technology Working Group. Retrieved from https://conbio.org/groups/working-groups/conservation-technology-working-groupGoogle ScholarGoogle Scholar
  7. Oded Berger-Tal and José J. Lahoz-Monfort. 2018. Conservation technology: The next generation. Conservation Letters 11(6). (Apr. 2018). DOI: https://doi.org/10.1111/conl.12458Google ScholarGoogle Scholar
  8. José J Lahoz-Monfort 2019. A Call for International Leadership and Coordination to Realize the Potential of Conservation Technology. BioScience 69(10). (Oct. 2019). DOI: https://doi.org/10.1093/biosci/biz090Google ScholarGoogle Scholar
  9. Francesca Cagnacci, Luigi Boitani, Roger A. Powell and Mark S. Boyce. 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Royal Society 365(1550). (Jul. 2010). DOI: https://doi.org/10.1098/rstb.2010.0107Google ScholarGoogle Scholar
  10. Habib, B., Shrotriya, S., Sivakumar, K. et al. Three decades of wildlife radio telemetry in India: a review. Anim Biotelemetry, 4 (2014). https://doi.org/10.1186/2050-3385-2-4Google ScholarGoogle Scholar
  11. Conrad J. Foley and Claudio Sillero-Zubiri. 2020. Open-source, low-cost modular GPS collars for monitoring and tracking wildlife. Methods in Ecological and Evolution 11(4) (Feb. 2020). 553-558. DOI: https://doi.org/10.1111/2041-210X.13369Google ScholarGoogle Scholar
  12. Allison Matthews . 2013. The success of GPS collar deployments on mammals in Australia. Australian Mammology 35(1) (Feb. 2013). 65-83. DOI: https://doi.org/10.1071/AM12021Google ScholarGoogle Scholar
  13. A. Cole Burton et al. 2015. REVIEW: Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52(3). 675-685. DOI: https://doi.org/10.1111/1365-2664.12432Google ScholarGoogle ScholarCross RefCross Ref
  14. Malachi Whitford and A. Peter Kimley. 2019. An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. Anim. Biotelemetry 7(26). (Dec. 2019). DOI: https://doi.org/10.1186/s40317-019-0189-zGoogle ScholarGoogle Scholar
  15. Dirk van der Linden. 2021. Interspecies information systems. Requirement Eng. (May 2021). DOI: https://doi.org/10.1007/s00766-021-00355-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Malachi Whitford and A. Peter Kimley. 2019. An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. Anim. Biotelemetry 7(26). (Dec. 2019). DOI: https://doi.org/10.1186/s40317-019-0189-zGoogle ScholarGoogle Scholar
  17. John H. Tibbetts. 2017. Remote Sensors Bring Wildlife Tracking to New Level: Trove of data yields fresh insights—and challenges. BioScience 67(5). (May 2017). 411-417. DOI: https://doi.org/10.1093/biosci/bix033Google ScholarGoogle ScholarCross RefCross Ref
  18. Robin Steenweg . 2016. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment. 15(1). (Dec. 2016). 26-34. DOI: https://doi.org/10.1002/fee.1448Google ScholarGoogle Scholar
  19. José J. Lahoz-Monfort and Michael J. L. Magrath. 2021. A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation. BioScience, (Jul. 2021). DOI: https://doi.org/10.1093/biosci/biab073Google ScholarGoogle Scholar
  20. Barbara Martinez 2020. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biological Invasions, 22, (Dec. 2019), 75–100. DOI: https://doi.org/10.1007/s10530-019-02146-yGoogle ScholarGoogle Scholar
  21. Serge A. Wich and Alex K. Piel. 2021. Conservation Technology. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  22. Bradley Cantrell, Laura J. Martin, and Erle C. Ellis. 2017. Designing Autonomy: Opportunities for New Wildness in the Anthropocene. Trends in Ecology & Evolution, 32(3), (Jan. 2017), 156–166. DOI: https://doi.org/10.1016/j.tree.2016.12.004Google ScholarGoogle Scholar
  23. PC Paquet and CT Darimont. 2010. Wildlife conservation and animal welfare: two sides of the same coin? Animal Welfare 19(2). (May 2010). 177–190.Google ScholarGoogle Scholar
  24. David Fraser. 2010. Toward a Synthesis of Conservation and Animal Welfare Science. Animal Welfare 19(2). (May 2010). 121-124.Google ScholarGoogle Scholar
  25. Michael C. Appleby, Daniel M Weary and Peter Sandøe (Ed.). 2014. Balancing the Need for Conservation and the Welfare of Individual Animals. Dilemmas in Animal Welfare. DOI: https://doi.org/10.1079/9781780642161.0124Google ScholarGoogle Scholar
  26. Steven Portugal and Craig R. White. 2018 Miniaturisation of biologgers is not alleviating the 5% rule. Methods in Ecology and Evolution 9(7). (Apr. 2018). DOI: http://dx.doi.org/10.1111/2041-210x.13013Google ScholarGoogle Scholar
  27. Matthew Wijers 2018. Listening to Lions: Animal-Borne Acoustic Sensors Improve Bio-logger Calibration and Behaviour Classification Performance. Front. Ecol. Evol. (Oct. 2018). DOI: https://doi.org/10.3389/fevo.2018.00171Google ScholarGoogle Scholar
  28. Jennifer McGowan 2016. Integrating research using animal-borne telemetry with the needs of conservation management. Journal of Applied Ecology 54(2). (Jul. 2016). 432-429. DOI: https://doi.org/10.1111/1365-2664.12755Google ScholarGoogle Scholar
  29. Mark Hebblewhite and Daniel T. Hayden. 2010. Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Biological Sciences. (Jul. 2010). DOI: https://doi.org/10.1098/rstb.2010.0087Google ScholarGoogle Scholar
  30. Clive McMahon, Robert Harcourt, Patrick Bateson, and Mark A. Hindell. 2012. Animal welfare and decision making in wildlife research. Biological Conservation 153. (Sep. 2012). 254-256. DOI: https://doi.org/10.1016/j.biocon.2012.05.004Google ScholarGoogle Scholar
  31. Julie Linchant, Jonathan Lisein, Jean Semeki, Philippe Lejeune, Cédric Vermeulen. 2015. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Review 45(4). (Oct. 2015). 239-252. DOI: https://doi.org/10.1111/mam.12046Google ScholarGoogle Scholar
  32. Penny Hawkins. 2004. Bio-logging and animal welfare: practical refinements. Memoirs of National Institute of Polar Research, Spec. Issue 58. (May 2003). 58-68.Google ScholarGoogle Scholar
  33. Ruth M. Casper. 2009. Guidelines for the instrumentation of wild birds and mammals. Animal Behaviour 78(6). (Dec. 2009). 1477-1483. DOI: https://doi.org/10.1016/j.anbehav.2009.09.023Google ScholarGoogle Scholar
  34. Matthew C. Perry. 1981. Abnormal Behavior of Canvasbacks Equipped with Radio Transmitters. The Journal of Wildlife Management 45(3). (Jul. 1981). 786-789. DOI: https://doi.org/10.2307/3808723Google ScholarGoogle ScholarCross RefCross Ref
  35. Thomas W. Bodey . 2017. A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods in Ecology and Evolution 9(4). (Nov. 2017). 946-955. DOI: https://doi.org/10.1111/2041-210X.12934Google ScholarGoogle Scholar
  36. CJ Brooks, C. Bonyongo, and S. Harris. 2008. Effects of Global Positioning System Collar Weight on Zebra Behavior and Location Error. Journal of Wildlife Error 72(2). (Feb. 2008). 527-534. http://www.jstor.org/stable/25097569Google ScholarGoogle Scholar
  37. Rory P. Wilson. 2011. The price tag. Nature 469. (Jan. 2011). 164-165. DOI: https://doi.org/10.1038/469164aGoogle ScholarGoogle Scholar
  38. Richard C. Cotter and Cindy J. Gratto. 1995. Effects of Nest and Brood Visits and Radio Transmitters on Rock Ptarmigan. The Journal of Wildlife Management 59(1). (Jan. 1995). 93-98. DOI: https://doi.org/10.2307/3809120Google ScholarGoogle ScholarCross RefCross Ref
  39. Paul M. Meyers,  Scott A. Hatch,  Daniel M. Mulcahy. 1998. Effect of Implanted Satellite Transmitters on the Nesting Behavior of Murres. The Condor 100(1). (Feb. 1998). 172-174. DOI: https://doi.org/10.2307/1369912Google ScholarGoogle Scholar
  40. Withey, John & Bloxton, Thomas & Marzluff, John. (2001). Chapter 3. Effects of Tagging and Location Error in Wildlife Radiotelemetry Studies. 10.1016/B978-012497781-5/50004-9.Google ScholarGoogle Scholar
  41. Marie-Charlott Rümmler, Osama Mustafa, Jakob Maercker, Hans-Ulrich Peter and Jan Esefeld. 2016. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biology 39. (Nov. 2015). 1329-1334. DOI: https://doi.org/10.1007/s00300-015-1838-1Google ScholarGoogle Scholar
  42. Mark A. Ditmer . 2015. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Current Biology 25(17). (Aug. 2015). 2278-2283. DOI: https://doi.org/10.1016/j.cub.2015.07.024.Google ScholarGoogle Scholar
  43. Anthony Caravaggi 2020. A review of factors to consider when using camera traps to study animal behavior to inform wildlife ecology and conservation. Conservation Science and Practice 2(8). (Jun. 2020). DOI: https://doi.org/10.1111/csp2.239Google ScholarGoogle Scholar
  44. Bruno Cidl et al. 2013. Preventing injuries caused by radiotelemetry collars in reintroduced red-rumped agoutis, Dasyprocta leporina (Rodentia: Dasyproctidae), in Atlantic Forest, southeastern Brazil. Zoologia (Curitiba) 30(1). (Feb 2013). https://doi.org/10.1590/S1984-46702013000100015.Google ScholarGoogle Scholar
  45. Raymond J. Greenwood and Alan B. Sargeant. 1973. Influence of Radio Packs on Captive Mallards and Blue-Winged Teal. Journal of Wildlife Management 37(1). (Jan. 1973). 3-9. DOI: https://doi.org/10.2307/3799732Google ScholarGoogle ScholarCross RefCross Ref
  46. Paul R. Krausman 2019. From the Field: Neck lesions in ungulates from collars incorporating satellite technology. Wildlife Society Bulletin 32(3). (Sep. 2004). 987-991. DOI: https://doi.org/10.2193/0091-7648(2004)032[0987:FTFNLI]2.0.CO;2Google ScholarGoogle Scholar
  47. Melia T. DeVivo . 2011. Survival and cause-specific mortality of elk Cervus canadensis calves in a predator rich environment. Wildlife Biology 17(2). (Jun. 2011). 156-165. DOI: https://doi.org/10.2981/10-080Google ScholarGoogle Scholar
  48. Jacob D. Hennig, J. Derek Scasta, Jeffrey L. Beck, Kathryn A. Schoenecker and Sarah R. B. King. 2020. Systematic review of equids and telemetry collars: implications for deployment and reporting. Wildlife Research 47(5). (Jul. 2020). 361-371. DOI: https://doi.org/10.1071/WR19229Google ScholarGoogle Scholar
  49. Jarrod C. Hodgson and Lian Pin Koh. 2016. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Current Biology 26(10). (May 2016). DOI: https://doi.org/10.1016/j.cub.2016.04.001Google ScholarGoogle Scholar
  50. Courtney Lynd Daigle. 2014. Incorporating the Philosophy of Technology into Animal Welfare Assessment. J Agric Environ Ethics 27. (Jan. 2014). 633–647. https://doi.org/10.1007/s10806-013-9482-7Google ScholarGoogle Scholar
  51. Patrizia Paci, Clara Mancini, and Blaine A. Price. 2019. Designing for wearability: an animal-centred framework. In Proceedings of the Sixth International Conference on Animal-Computer Interaction (ACI'19). Association for Computing Machinery, New York, NY, USA, Article 8, 1–12. DOI:https://doi.org/10.1145/3371049.3371051Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Patrizia Paci. 2019. A Wearer-Centred Framework to Design for Wearability in Animal Biotelemetry. Biotelemetry. PhD dissertation, The Open University, UK. DOI: https://doi.org/10.21954/ou.ro.00010942Google ScholarGoogle Scholar
  53. International Biologging Society. Retrieved from https://www.bio-logging.net/#toolsGoogle ScholarGoogle Scholar
  54. Michael E. Soulé. 1985. What Is Conservation Biology? BioScience 35(11). (Dec. 1985). 727–734. DOI: https://doi.org/10.2307/1310054Google ScholarGoogle Scholar
  55. Ngaio J. Beausoleil. 2020.I Am a Compassionate Conservation Welfare Scientist: Considering the Theoretical and Practical Differences Between Compassionate Conservation and Conservation Welfare. Animals 10(2). (Feb. 2020). 257. DOI: https://doi.org/10.3390/ani10020257Google ScholarGoogle Scholar
  56. Ngaio J. Beausoleil 2018. “Feelings and Fitness” Not “Feelings or Fitness”–The Raison d'être of Conservation Welfare, Which Aligns Conservation and Animal Welfare Objectives. Front. Vet. Sci. (Nov. 2018). DOI: https://doi.org/10.3389/fvets.2018.00296Google ScholarGoogle Scholar
  57. James Kirkwood and Robert C. Hubrecht (Ed). 2010. Welfare and ‘best practice in field studies of wildlife. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. Wiley.Google ScholarGoogle Scholar
  58. Ben A. Minteer and James P. Collins. 2005. Why we need an “ecological ethics”. Frontiers in Ecology and the Environment 3(6). (Aug. 2005). 332-337. DOI: https://doi.org/10.1890/1540-9295(2005)003[0332:WWNAEE]2.0.CO;2Google ScholarGoogle Scholar
  59. Carl D. Soulsbury 2020. The welfare and ethics of research involving wild animals: A primer. Methods in Ecology and Evolution. (Jun. 2020). DOI: https://doi.org/10.1111/2041-210X.13435Google ScholarGoogle Scholar
  60. JWD Wildlife Welfare Supplement Editorial Board. 2016. Advances in animal welfare for free-living animals. J Wildl Dis 52(2):S4-13. (Apr. 2016). DOI: 10.7589/52.2S.S4Google ScholarGoogle ScholarCross RefCross Ref
  61. Miriam A. Zemanova. 2020. Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildlife Biology 2020(1). (Mar 2020). DOI: https://doi.org/10.2981/wlb.00607Google ScholarGoogle Scholar
  62. Field KA, Paquet PC, Artelle K, Proulx G, Brook RK, 2020. Publication reform to safeguard wildlife from researcher harm. PLOS Biology 18(5). (Apr. 2019). DOI: https://doi.org/10.1371/journal.pbio.3000752Google ScholarGoogle Scholar
  63. Isabella L. K. Clegg, Rebecca M. Boys and Karen A. Stockin. 2021. Increasing the Awareness of Animal Welfare Science in Marine Mammal Conservation: Addressing Language, Translation and Reception Issues. Animal 11(6). (May 2021). 1596. DOI: https://doi.org/10.3390/ani11061596Google ScholarGoogle Scholar
  64. Sandra E. Baker, Stephanie A. Maw, Paul J. Johnson and David W. Macdonald. 2020. Not in My Backyard: Public Perceptions of Wildlife and ‘Pest Control’ in and around UK Homes, and Local Authority ‘Pest Control’. Animals 10(2). (Jan. 2020). 644. DOI: https://doi.org/10.3390/ani10020222Google ScholarGoogle Scholar
  65. Vassili Papastavrou, Russell Leaper and David Lavigne. 2017. Why management decisions involving marine mammals should include animal welfare. Marine Policy 79, (May 2017), 19-24. DOI: https://doi.org/10.1016/j.marpol.2017.02.001Google ScholarGoogle ScholarCross RefCross Ref
  66. Ronald R. Swaisgood. 2007. Current status and future directions of applied behavioral research for animal welfare and conservation. Applied Animal Behaviour Science, 102(3–4), (Feb. 2007), 139–162. DOI: https://doi.org/10.1016/j.applanim.2006.05.027Google ScholarGoogle Scholar
  67. Clara Mancini. 2011. Animal-computer interaction: a manifesto. Interactions. ACM 18, 4 (Jul. + Aug. 2011), 69–73. DOI: https://doi.org/10.1145/1978822.1978836Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Clara Mancini, Shaun Lawson, and Oskar Juhlin. 2017. Animal-Computer Interaction: the Emergence of a Discipline. Journal of Human Computer Studies, 98, (Feb. 2017), 129–134. DOI: https://www.sciencedirect.com/science/article/pii/S1071581916301355?via%3DihubGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  69. Hirskyj-Douglas I, Pons P, Read JC, and Jaen J. 2018. Seven Years after the Manifesto: Literature Review and Research Directions for Technologies in Animal Computer Interaction. Multimodal Technologies and Interaction, 2, (2), 30. DOI: https://doi.org/10.3390/mti2020030Google ScholarGoogle ScholarCross RefCross Ref
  70. Dirk van der Linden and Anna Zamansky. 2017. Agile with Animals: Towards a Development Method. In Just-In-Time Requirements Engineering (JITRE), 2017 IEEE Workshop, Lisbon, Portugal. 423–426. DOI: https://doi.org/10.1109/REW.2017.11Google ScholarGoogle ScholarCross RefCross Ref
  71. Ilyena Hirskyj-Douglas, Janet C. Read, Matthew Horton. 2017. Animal Personas: Representing Dog Stakeholders in Interaction Design. In Proceedings of the 31st International BCS Human Computer Interaction Conference (HCI 2017). Digital Make-Believe, Sunderland, UK. DOI: http://dx.doi.org/10.14236/ewic/HCI2017.37Google ScholarGoogle ScholarCross RefCross Ref
  72. Jessica Katherine Frawley and Laurel Evelyn Dyson. 2014. Animal personas: acknowledging non-human stakeholders in designing for sustainable food systems. In Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: the Future of Design (OzCHI '14). Association for Computing Machinery, New York, NY, USA, 21–30. DOI:https://doi.org/10.1145/2686612.2686617Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Fiona French, Clara Mancini, and Helen Sharp. 2017. Exploring Research through Design in Animal Computer Interaction. In Proceedings of the Fourth International Conference on Animal-Computer Interaction (ACI2017). Association for Computing Machinery, New York, NY, USA, Article 2, 1–12. DOI:https://doi.org/10.1145/3152130.3152147Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Anna Zamansky, Amanda Roshier, Clara Mancini, Emily C. Collins, Carol Hall, Katie Grillaert, Ann Morrison, Steve North, and Hanna Wirman. 2017. A Report on the First International Workshop on Research Methods in Animal-Computer Interaction. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '17). Association for Computing Machinery, New York, NY, USA, 806–815. DOI: https://doi.org/10.1145/3027063.3052759Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Katherine Grillaert and Samuel Camenzind. 2016. Unleashed enthusiasm: ethical reflections on harms, benefits, and animal-centered aims of ACI. In Proceedings of the Third International Conference on Animal-Computer Interaction (ACI '16). Association for Computing Machinery, New York, NY, USA, Article 9, 1–5. DOI: https://doi.org/10.1145/2995257.299538Google ScholarGoogle ScholarCross RefCross Ref
  76. Clara Mancini. 2018. Animal-computer Interaction: Animals as Co-Designers of Technologically Supported Ecosystems. (July 2018). Retrieved August 17, 2021 from http://pd4more.urbaninformatics.net/wp-content/uploads/2018/07/Mancini_Clara_v2.pdf.Google ScholarGoogle Scholar
  77. Clara Mancini. 2017. Towards an animal-centred ethics for Animal-Computer Interaction. Int. J. Hum. Comput. Stud. 50 (Apr. 2017). 221-233. DOI: https://doi.org/10.1016/j.ijhcs.2016.04.008Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Hiroki Kobayashi, Kana Muramatsu, Junya Okuno, Kazuhiko Nakamura, Akio Fujiwara, and Kaoru Saito. 2015. Playful rocksalt system: animal-computer interaction design in wild environments. In Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology(ACE '15). Association for Computing Machinery, New York, NY, USA, Article 62, 1–4. DOI: https://doi.org/10.1145/2832932.2837012Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Jean-Loup Rault, Sarah Webber, and Marcus Carter. 2015. Cross-disciplinary perspectives on animal welfare science and animal-computer interaction. In Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (ACE '15). Association for Computing Machinery, New York, NY, USA, Article 56, 1–5. DOI: https://doi.org/10.1145/2832932.2837014Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Patrizia Paci, Clara Mancini, and Blaine A. Price. 2017. The Role of Ethological Observation for Measuring Animal Reactions to Biotelemetry Devices. In Proceedings of the Fourth International Conference on Animal-Computer Interaction (ACI2017). Association for Computing Machinery, New York, NY, USA, Article 5, 1–12. DOI: https://doi.org/10.1145/3152130.3152144Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Patrizia Paci, Clara Mancini, and Blaine A. Price. 2016. Towards a Wearer-Centred Framework for Animal Biotelemetry. In: Proceedings of Measuring Behaviour 2016 (Spink, A.J ed.), 25-27 May 2016, Dublin.Google ScholarGoogle Scholar
  82. Anna Zamansky, Dirk van der Linden, and Sofya Baskin. 2017. Pushing Boundaries of RE: Requirement Elicitation for Non-Human Users. In 2017 IEEE 25th International Requirements Engineering Conference (RE). IEEE, Lisbon, Portugal, 406–411. doi: https://doi.org/10.1109/RE.2017.30Google ScholarGoogle Scholar
  83. Bonnie M. Perdue, Andrea W. Clay, Diann E. Gaalema, Terry L. Maple, Tara S. Stoinski. 2012. Technology at the zoo: the influence of a touchscreen computer on orangutans and zoo visitors. Zoo Biol., 31(1), (Jan.–Feb. 2012), 27–39. DOI: https://doi.org/10.1002/zoo.20378Google ScholarGoogle Scholar
  84. Bonnie M. Perdue. 2016. The Effect of Computerized Testing on Sun Bear Behavior and Enrichment Preferences. Behav Sci (Basel), 6(4), (Dec. 2016), 19. DOI: https://dx.doi.org/10.3390%2Fbs6040019Google ScholarGoogle Scholar
  85. Fiona French, Clara Mancini, and Helen Sharp. 2015. Designing Interactive Toys for Elephants. In CHI PLAY ’15: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, ACM 523–528. DOI: http://dx.doi.org/doi:10.1145/2793107.2810327Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Ida Kathrine Hammeleff Jørgensen and Hanna Wirman. 2016. Multispecies methods, technologies for play. Digital Creativity, 27(1), (Mar. 2016), 37–51. DOI: http://dx.doi.org/doi:10.1145/2793107.2810327Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Fiona French, Clara Mancini, and Helen Sharp. 2016. Exploring methods for interaction design with animals: a case-study with Valli. In ACI ’16: Proceedings of the Third International Conference on Animal-Computer Interaction, Association for Computing Machinery, New York, NY, USA, Article 3, 1–5. DOI: https://doi.org/10.1145/2995257.2995394Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Roosa Piitulainen and I. Hirskyj-Douglas. 2020. Music for Monkeys: Building Methods to Design with White-Faced Sakis for Animal-Driven Audio Enrichment Devices. Animals : an Open Access Journal from MDPI, 10, (Sept. 2020), 1768, DOI: https://doi.org/10.3390/ani10101768Google ScholarGoogle Scholar
  89. Patricia Pons, Marcus Carter, and Javier Jaen. 2016. Sound to your Objects: A Novel Design Approach to Evaluate Orangutans’ Interest in Sound-based Stimuli. In ACI ’16: Proceedings of the Third International Congress on Animal Computer Interaction (ACI ’16). Association for Computing Machinery. New York, NY, USA, Article 7, 1–5. DOI: https://doi.org/10.1145/2995257.2995383Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Caitlin A. Ford, Liz Bellward, Clive J. C. Phillips, and Kris Descovich. 2021. Use of Interactive Technology in Captive Great Ape Management. J. Zool. Bot. Gard., 2(2), (Jun. 2021), 300–315. DOI: https://doi.org/10.3390/jzbg2020021Google ScholarGoogle ScholarCross RefCross Ref
  91. Marcus Carter, Sarah Webber, and Sally L. Sherwen. 2015. Naturalism and ACI: Augmenting Zoo Enclosures with Digital Technology. In ACE '15: Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology, Association for Computing Machinery. New York, NY, USA, Article 61, 1–5. DOI: https://doi.org/10.1145/2832932.2837011Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Sarah E. Ritvo and Robert S. Allison. 2017. Designing for the exceptional user: Nonhuman animal-computer interaction (ACI). Computers in Human Behavior, 70, (May 2017), 222–233. DOI: https://doi.org/10.1016/j.chb.2016.12.062Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Steve North. 2016. Do Androids dream of electric steeds?: the allure of horse-computer interaction. Interactions, 23(2), (Mar. + Apr. 2016), 50–53. DOI: https://doi.org/10.1145/2882529Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Fredrik Aspling. 2020. Unleashing Animal-Computer Interaction: A Theoretical Investigation of the ‘I’ in ACI. PhD dissertation, Department of Computer and Systems Sciences, Stockholm University. (May 2020). 152. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180974Google ScholarGoogle Scholar
  95. W. L. Linklater and J. V. Gedir. 2010. Distress unites animal conservation and welfare towards synthesis and collaboration. Animal Conservation, 14(1), (Oct. 2010), 25–27. DOI: https://doi.org/10.1111/j.1469-1795.2010.00399.xGoogle ScholarGoogle Scholar
  96. Peter Jones. 2018. Contexts of Co-creation: Designing with System Stakeholders. In: Jones P., Kijima K. (eds) Systemic Design. Translational Systems Sciences, vol 8. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55639-8_1Google ScholarGoogle Scholar
  97. Lauren M. Aquino Shluzas, Martin Steinert, Larry J. Leifer. 2011. Designing to Maximize Value for Multiple Stakeholders: A Challenge to Med-Tech Innovation. In DS 68-10: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 10: Design Methods and Tools pt. 2, Lyngby/Copenhagen, Denmark, 15.Google ScholarGoogle Scholar
  98. Hanna Hasselqvist and Elina Eriksson. 2018. Designing for diverse stakeholder engagement in resource-intensive practices. In Proceedings of the 10th Nordic Conference on Human-Computer Interaction (NordiCHI '18). Association for Computing Machinery, New York, NY, USA, 426–438. DOI:https://doi.org/10.1145/3240167.3240193Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Niels van Berkel, Simon Dennis, Michael Zyphur, Jinjing Li, Andrew Heathcote, Vassilis Kostakos. 2020. Modeling interaction as a complex system. Human-Computer Interaction, 36(4), (Jan.2020), 1–27. DOI: http://dx.doi.org/10.1080/07370024.2020.1715221Google ScholarGoogle Scholar
  100. Soenke Ziesche. 2021. AI Ethics and Value Alignment for Nonhuman Animals. Philosophies, 6(2), (Apr. 2021), 31. DOI: https://doi.org/10.3390/philosophies6020031Google ScholarGoogle Scholar
  101. Bill Tomlinson, Bonnie Nardi, Daniel Stokols, and Ankita Raturi. 2021. Ecosystemas: Representing Ecosystem Impacts in Design. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (CHI EA '21). Association for Computing Machinery, New York, NY, USA, Article 14, 1–10. DOI:https://doi.org/10.1145/3411763.3450382Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. David Fraser. 2011. A “Practical” Ethic for Animals. J Agric Environ Ethics, 25, (Oct. 2012), 721–746. DOI: https://doi.org/10.1007/s10806-011-9353-zGoogle ScholarGoogle Scholar
  103. Jonathan Beever and Andrew O. Brightman. 2016. A Principlist Approach for Thinking About the Social Impacts of Engineering. In 2016 ASEE Annual Conference & Exposition, ASEE, New Orleans, LA, USA, URL: https://peer.asee.org/26408Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ACI '21: Proceedings of the Eight International Conference on Animal-Computer Interaction
    November 2021
    144 pages
    ISBN:9781450385138
    DOI:10.1145/3493842

    Copyright © 2021 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 18 May 2022

    Check for updates

    Qualifiers

    • extended-abstract
    • Research
    • Refereed limited

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format