skip to main content
10.1145/3486713.3486744acmotherconferencesArticle/Chapter ViewAbstractPublication PagescsbioConference Proceedingsconference-collections
research-article

Spatio-Temporal Evolution of Cellular Automata based Single Nephron Rigid Tubular Model

Published:14 December 2021Publication History

ABSTRACT

Partial differential equations play an important role in mathematical modeling of nephrons. The finite difference solution methods exhibit regular, period doubling and irregular oscillations. In this paper, a single nephron model with transport mechanism and autoregulatory mechanism has been developed using cellular automata framework for a rigid tubule. Cellular automata framework captures the emergent behavior of the system. The importance of cellular automata approach of studying a dynamical system emanates from its ability to capture new behavior not easily shown by numerical analysis. The governing equations of a single nephron model are converted to cellular automata local rules using ultradiscretization. The emergent properties from the local cellular automata rules have been compared with the reported experimental findings. It has been shown that cellular automata framework with ultradiscretization is a promising approach to model macrolevel behaviors of physiological systems.

References

  1. Daniel A Beard and Muriel Mescam. 2012. Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats. BMC Physiology 12, 1 (2012), 1. https://doi.org/10.1186/1472-6793-12-6Google ScholarGoogle ScholarCross RefCross Ref
  2. Ki H Chon, Yu-Ming Chen, N-H Holstein-Rathlou, and Vasilis Z Marmarelis. 1998. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats. IEEE Transactions on Biomedical Engineering 45, 3 (1998), 342–353. https://doi.org/10.1109/10.661159Google ScholarGoogle ScholarCross RefCross Ref
  3. Ki H Chon, Ramakrishna Raghavan, Yu-Ming Chen, Donald J Marsh, and Kay-Pong Yip. 2005. Interactions of TGF-dependent and myogenic oscillations in tubular pressure. American Journal of Physiology-Renal Physiology 288, 2(2005), F298–F307. https://doi.org/10.1152/ajprenal.00164.2004Google ScholarGoogle ScholarCross RefCross Ref
  4. William A Cupples and Branko Braam. 2007. Assessment of renal autoregulation. American Journal of Physiology-Renal Physiology 292, 4(2007), F1105–F1123. https://doi.org/10.1152/ajprenal.00194.2006Google ScholarGoogle ScholarCross RefCross Ref
  5. Frederick H Daniels and William J Arendshorst. 1990. Tubuloglomerular feedback kinetics in spontaneously hypertensive and Wistar-Kyoto rats. American Journal of Physiology-Renal Physiology 259, 3(1990), F529–F534. https://doi.org/10.1152/ajprenal.1990.259.3.F529Google ScholarGoogle ScholarCross RefCross Ref
  6. DC Eaton and JP Pooler. 2004. Renal functions, anatomy, and basic processes. Vander’s renal physiology. 6th ed. New York: McGraw-Hill (2004), 17.Google ScholarGoogle Scholar
  7. JB Garner. 1990. Mathematical analysis of multisolute renal flow in a single nephron model of the kidney. Journal of mathematical biology 28, 3 (1990), 317–327. https://doi.org/10.1007/BF00178780Google ScholarGoogle ScholarCross RefCross Ref
  8. Carl W Gottschalk and Margaret Mylle. 1957. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. American Journal of Physiology–Legacy Content 189, 2 (1957), 323–328. https://doi.org/10.1152/ajplegacy.1957.189.2.323Google ScholarGoogle Scholar
  9. NH Holstein-Rathlou and DJ Marsh. 1990. A dynamic model of the tubuloglomerular feedback mechanism. American Journal of Physiology-Renal Physiology 258, 5(1990), F1448–F1459. https://doi.org/10.1152/ajprenal.1990.258.5.F1448Google ScholarGoogle ScholarCross RefCross Ref
  10. N-H Holstein-Rathlou and PP Leyssac. 1986. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiologica 126, 3 (1986), 333–339. https://doi.org/10.1111/j.1748-1716.1986.tb07824.xGoogle ScholarGoogle ScholarCross RefCross Ref
  11. S Isojima, B Grammaticos, A Ramani, and J Satsuma. 2006. Ultradiscretization without positivity. Journal of Physics A: Mathematical and General 39, 14 (2006), 3663. https://doi.org/10.1088/0305-4470/39/14/011/metaGoogle ScholarGoogle ScholarCross RefCross Ref
  12. Graybill Scott Jason. 2010. Modelling nephron dynamics and tubuloglomerular feedback. Centre for Bioengineering, University of Canterbury (2010).Google ScholarGoogle Scholar
  13. Sheng Jin, Liang Xu, Cheng Xu, and Dongfang Ma. 2019. Lane width-based cellular automata model for mixed bicycle traffic flow. Computer-Aided Civil and Infrastructure Engineering (2019). https://doi.org/10.1111/mice.12445Google ScholarGoogle Scholar
  14. R Kainer. 1979. A functional model of the rat kidney. Journal of mathematical biology 7, 1 (1979), 57–94. https://doi.org/10.1007/BF00276414Google ScholarGoogle ScholarCross RefCross Ref
  15. James P Keener and James Sneyd. 1998. Mathematical physiology. Vol. 1. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Siva Manohar Reddy Kesu and Hariharan Ramasangu. 2016. Improved Nephron Model for Pressure-Diuresis and Pressure-Natriuresis. In 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 192–197. https://doi.org/10.1109/BIBE.2016.59Google ScholarGoogle Scholar
  17. Anita T Layton and Aurélie Edwards. 2014. Mathematical Modeling in Renal Physiology. Springer.Google ScholarGoogle Scholar
  18. Anita T Layton, Harold E Layton, William H Dantzler, and Thomas L Pannabecker. 2009. The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology 24, 4 (2009), 250–256. https://doi.org/10.1152/physiol.00013.2009Google ScholarGoogle ScholarCross RefCross Ref
  19. PP Leyssac and NH Holstein-Rathlou. 1986. Effects of various transport inhibitors on oscillating TGF pressure responses in the rat. Pflügers Archiv 407, 3 (1986), 285–291. https://doi.org/10.1007/BF00585304Google ScholarGoogle ScholarCross RefCross Ref
  20. Robert Moss, Ed Kazmierczak, Michael Kirley, and Peter Harris. 2009. A computational model for emergent dynamics in the kidney. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, 1896 (2009), 2125–2140. https://doi.org/10.1098/rsta.2008.0313Google ScholarGoogle ScholarCross RefCross Ref
  21. Robert Moss and Anita T Layton. 2014. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model. American Journal of Physiology-Renal Physiology 306, 9(2014), F952–F969. https://doi.org/10.1152/ajprenal.00500.2013Google ScholarGoogle ScholarCross RefCross Ref
  22. Robert Moss and S Randall Thomas. 2014. Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis. American Journal of Physiology-Renal Physiology 306, 2(2014), F224–F248. https://doi.org/10.1152/ajprenal.00089.2013Google ScholarGoogle ScholarCross RefCross Ref
  23. Mikio Murata. 2013. Tropical discretization: ultradiscrete Fisher–KPP equation and ultradiscrete Allen–Cahn equation. Journal of Difference Equations and Applications 19, 6(2013), 1008–1021. https://doi.org/10.1080/10236198.2012.705834Google ScholarGoogle Scholar
  24. Katsuhiro Nishinari and Daisuke Takahashi. 1998. Analytical properties of ultradiscrete Burgers equation and rule-184 cellular automaton. Journal of Physics A: Mathematical and General 31, 24 (1998), 5439. https://doi.org/10.1088/0305-4470/31/24/006/metaGoogle ScholarGoogle ScholarCross RefCross Ref
  25. Shousuke Ohmori and Yoshihiro Yamazaki. 2016. Cellular Automata for Spatiotemporal Pattern Formation from Reaction–Diffusion Partial Differential Equations. Journal of the Physical Society of Japan 85, 1 (2016), 014003. https://doi.org/10.7566/JPSJ.85.014003Google ScholarGoogle Scholar
  26. S Randall Thomas. 2009. Kidney modeling and systems physiology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1, 2(2009), 172–190. https://doi.org/10.1002/wsbm.14Google ScholarGoogle ScholarCross RefCross Ref
  27. Hwayeon Ryu. 2014. Feedback-Mediated Dynamics in the Kidney: Mathematical Modeling and Stochastic Analysis. Ph.D. Dissertation. Duke University.Google ScholarGoogle Scholar
  28. Hwayeon Ryu and Anita T Layton. 2014. Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney. Journal of mathematical biology 68, 4 (2014), 1023–1049. https://doi.org/10.1007/s00285-013-0667-5Google ScholarGoogle ScholarCross RefCross Ref
  29. Jurgen Schnermann and Josephine P Briggs. 2008. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. Kidney International 74, 4 (2008), 418–426. https://doi.org/10.1038/ki.2008.145Google ScholarGoogle ScholarCross RefCross Ref
  30. Gale Thomas. 2016. Simulation of whole mammalian kidneys using complex networks. Computing and Information System(2016).Google ScholarGoogle Scholar
  31. S Randall Thomas. 2019. Mathematical models for kidney function focusing on clinical interest. Morphologie 103, 343 (2019), 161–168. https://doi.org/10.1016/j.morpho.2019.10.043Google ScholarGoogle ScholarCross RefCross Ref
  32. Tetsuji Tokihiro, Daisuke Takahashi, Junta Matsukidaira, and Junkichi Satsuma. 1996. From soliton equations to integrable cellular automata through a limiting procedure. Physical Review Letters 76, 18 (1996), 3247. https://doi.org/10.1103/PhysRevLett.76.3247Google ScholarGoogle ScholarCross RefCross Ref
  33. Alan M Weinstein. 2003. Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty. American Journal of Physiology-Renal Physiology 284, 5(2003), F871–F884. https://doi.org/10.1152/ajprenal.00330.2002Google ScholarGoogle ScholarCross RefCross Ref
  34. S Wolfram. 2002. A new kind of science. Vol. 5. Wolfram Media Champaign, IL. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. David K Young and Donald J Marsh. 1981. Pulse wave propagation in rat renal tubules: implications for GFR autoregulation. American Journal of Physiology-Renal Physiology 240, 5(1981), F446–F458. https://doi.org/10.1152/ajprenal.1981.240.5.f446Google ScholarGoogle ScholarCross RefCross Ref
Index terms have been assigned to the content through auto-classification.

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    CSBio2021: The 12th International Conference on Computational Systems-Biology and Bioinformatics
    October 2021
    97 pages
    ISBN:9781450385107
    DOI:10.1145/3486713

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 14 December 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate23of37submissions,62%
  • Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format