skip to main content
10.1145/3417519.3417559acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbipConference Proceedingsconference-collections
research-article

Nonrigid Registration of Multimodal Images Using Local Structural Descriptors

Authors Info & Claims
Published:25 September 2020Publication History

ABSTRACT

Nonrigid registration plays an important role in reducing potential intensity and geometric differences across individual images with varying modalities. In this paper, we propose a new registration method by introducing two local structural descriptors and a similarity measure. The descriptors are used to highlight small intensity variations and represent the texture characteristics of desirable objects, while the measure estimates image differences based on the introduced descriptors. With these descriptors and measure, multimodal images can be aligned in the free form deformation (FFD) registration framework. Experimental results on two public magnetic resonance (MR) image datasets demonstrated that the developed method can achieve reasonable registration accuracy, and outperformed some existing methods.

References

  1. Sotiras, A., Davatzikos, C., Paragios, N. 2013. Deformable Medical Image Registration: A Survey, IEEE Transactions on Medical Imaging, 32(7) (Jul, 2013), 1153--1190. DOI= https://doi.org/10.1109/TMI.2013.2265603Google ScholarGoogle ScholarCross RefCross Ref
  2. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D. 1999. Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images, IEEE Transactions on medical imaging, 18(8) (Aug, 1999), 712--721. DOI= https://doi.org/10.1109/42.796284Google ScholarGoogle ScholarCross RefCross Ref
  3. Li, Z., Mahapatra, D., Stoker, J., Vliet, L. Vos, F. 2016. Image Registration Based on Autocorrelation of Local Structure, IEEE Transactions on Medical Imaging, 35(1) (Jan, 2016), 63--75. DOI= https://doi.org/10.1109/TMI.2015.2455416Google ScholarGoogle ScholarCross RefCross Ref
  4. Wang, Q., Kim, M., Shi, Y., Wu, G., Shen, D. 2015. Predict brain MR image registration via sparse learning of appearance and transformation, Medical Image Analysis 20 (Feb, 2015), 61--75. DOI= https://doi.org/10.1016/j.media.2014.10.007Google ScholarGoogle ScholarCross RefCross Ref
  5. Roy, S., Carass, A., Bazin, P., Prince, J. 2011. Intensity Inhomogeneity Correction of Magnetic Resonance Images using Patches, Proc SPIE; 7962-7962F. doi: 10.1117/12.877466 (Jul, 2011). DOI= https://doi.org/10.1117/12.877466Google ScholarGoogle ScholarCross RefCross Ref
  6. Ye, Y., Shan, J., Bruzzone, L., Shen, L. 2017. Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity, IEEE Transactions on Geoscience and Remote Sensing, 55(5) (Feb, 2017), 2941--2958. DOI= https://doi.org/10.1109/TGRS.2017.2656380Google ScholarGoogle ScholarCross RefCross Ref
  7. Snape, P., Pszczolkowski, S., Zafeiriou, S., Tzimiropoulos, G., Ledig, C., Rueckert, D. 2016. A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing 52 (Aug, 2016), 97--113. DOI= https://doi.org/10.1016/j.imavis.2016.05.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Wang, L., Gao, X., Cui, X., Liang, Z. 2014. 2D/3D rigid registration by integrating intensity distance, Optics and Precision Engineering, 22(10) (Oct, 2014), 2815--2824. DOI= https://doi.org/10.3788/OPE.20142210.2815Google ScholarGoogle Scholar
  9. Wang, L., Gao, X., Zhou, Z., Wang, X. 2014. Evaluation of Four Similarity Measures for 2D/3D Registration in Image-Guided Intervention, Journal of Medical Imaging and Health Informatics, 4 (Jun, 2014), 416--421. DOI= https://doi.org/10.1166/jmihi.2014.1274Google ScholarGoogle ScholarCross RefCross Ref
  10. Wang, L., Gao, X., Fang, Q. 2013. A novel mutual information-based similarity measure for 2D/3D registration in image guided intervention, 2013 International Conference on Orange Technologies (ICOT) (Mar, 2013), 135--138. DOI= https://doi.org/10.1109/icot.2013.6521176Google ScholarGoogle ScholarCross RefCross Ref
  11. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P. 1997. Multimodality image registration by maximization of mutual information, IEEE Transactions on Medical Imaging, 16(2) (May, 1997), 187--198. DOI= https://doi.org/10.1109/42.563664Google ScholarGoogle ScholarCross RefCross Ref
  12. Studholme, C., Hill, D., Hawkes, D. 1999. An overlap invariant entropy measure of 3D medical image alignment, Pattern Recognition, 32(1) (Jan, 1999), 71--86. DOI= https://doi.org/10.1016/S0031-3203(98)00091-0Google ScholarGoogle ScholarCross RefCross Ref
  13. Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P. 2010. Nonrigid image registration using conditional mutual information, IEEE Transactions on Medical Imaging, 29(1) (Feb, 2010), 19--29. DOI= https://doi.org/10.1109/TMI.2009.2021843Google ScholarGoogle ScholarCross RefCross Ref
  14. Wachinger, C., Navab, N. 2010. Structural Image Representation for Image Registration, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (Jun, 2010), 13--18. DOI= https://doi.org/10.1109/AISP.2015.7123534Google ScholarGoogle ScholarCross RefCross Ref
  15. Li, Q., Wang, G., Liu, J., Chen, S. 2009. Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration, IEEE Geoscience and Remote Sensing Letters, 6(2) (May, 2009), 287--291. DOI= https://doi.org/10.1109/LGRS.2008.2011751Google ScholarGoogle Scholar
  16. Wang, L., Chen, G., Shi, D., Chang, Y., Chan, S., Pu, J., Yang, X. 2018. Active contours driven by edge entropy fitting energy for image segmentation, Signal Processing, 149 (Mar, 2018), 27--35. DOI= https://doi.org/10.1016/j.sigpro.2018.02.025Google ScholarGoogle ScholarCross RefCross Ref
  17. Heinrich, M., Jenkinson, M., Gleeson, F., Brady, S., Schnabel, J. 2011. Deformable multimodal registration with gradient orientation based on structure tensors, Annals of the BMVA, 2011(2) (Jan, 2011), 1--11. DOI= https://doi.org/10.1007/bmva.2011/2011-0002Google ScholarGoogle Scholar
  18. Henrich, M., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F., Brady, S., Schnabel, J. 2012. MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration, Medical Image Analysis 16 (Oct, 2012), 1423--1435. DOI= https://doi.org/10.1016/j.media.2012.05.008Google ScholarGoogle Scholar
  19. Hu, Y., Modat, M., Gibson, E., Li, W., Ghavami, N., Bonmati, E., Wang, G., Bandula, S., Moore, C., Emberton, M., Ourselin, S., Nobel, J., Barratt, D., Vercauteren, T. 2018. Weakly-supervised convolutional neural networks for multimodal image registration, Medical Image Analysis, 49 (Oct, 2018), 1--13. DOI= https://doi.org/10.1016/j.media.2018.07.002Google ScholarGoogle ScholarCross RefCross Ref
  20. Shan, S., Yan, W., Guo, X., Chang, E., Fan, Y., Xu, Y. 2018. Unsupervised End-to-end Learning for Deformable Medical Image Registration, arXiv: 1711.08608v2, 2018.Google ScholarGoogle Scholar
  21. Zhao, S., Dong, Y., Chang, E., Xu, Y. 2019. Recursive Cascaded Networks for Unsupervised Medical Image Registration, arXiv: 1907.12353v1, 2019.Google ScholarGoogle Scholar
  22. Lau, T., Luo, J., Zhao, S., Chang, E., Xu, Y. 2019. Unsupervised 3D End-to-End Medical Image Registration with Volume Tweening Network, arXiv: 1902.05020v1, 2019.Google ScholarGoogle Scholar
  23. Kwan, R., Evans, A., Pike, G. 1999. MRI simulation-based evaluation of image-processing and classification methods, IEEE Transactions on Medical Imaging. 18(11) (Dec, 1999), 1085--97. DOI= https://doi.org/10.1109/42.816072Google ScholarGoogle ScholarCross RefCross Ref
  24. Klein, A., Andersson, J., Ardekani, B., Ashburner, J., Avants, B., Chiang, M., Christensen, G., Collins, D., Gee, J., Hellier, P., Song, J., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercanuteren, T., Woods, R., Mann, J., Parsey, R. 1999. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, 46(3) (Feb, 1999), 786--802. DOI= https://doi.org/10.1016/j.neuroimage.2008.12.037Google ScholarGoogle Scholar
  25. Wang, L., Zhu, J., Sheng, M., Cribb, A., Zhu, S., Pu, J. 2018. Simultaneous segmentation and bias field estimation using local fitted images, Pattern Recognition, 74 (Sep, 2018), 145--155. DOI= https://doi.org/10.1016/j.patcog.2017.08.031Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wang, L., Liu, H., Lu, Y., Chen, H., Zhang, J., Pu, J. 2019. A coarse-to-fine deep learning framework for optic disc segmentation in fundus images, Biomedical Signal Processing and Control, 51 (Jan, 2019), 82--89. DOI= https://doi.org/10.1016/j.bspc.2019.01.022Google ScholarGoogle ScholarCross RefCross Ref
  27. Wang, L., Liu, H., Zhang, J., Chen, H., Pu, J. 2019. Automated segmentation of the optic disc using the deep learning, SPIE Medical Imaging 2019: Image Processing; doi: 10.1117/12.2510372. DOI= https://doi.org/10.1117/12.2510372Google ScholarGoogle Scholar
  28. Wang, L., Chang, Y., Wang, H., Wu, Z., Pu, J., Yang, X. 2017. An active contour model based on local fitted images for image segmentation, Information Sciences, 418 (Jul, 2017), 61--73. DOI= https://doi.org/10.1016/j.ins.2017.06.042.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nonrigid Registration of Multimodal Images Using Local Structural Descriptors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBIP '20: Proceedings of the 5th International Conference on Biomedical Signal and Image Processing
      August 2020
      99 pages
      ISBN:9781450387767
      DOI:10.1145/3417519

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 September 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)4
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader