skip to main content
10.1145/3411764.3446866acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Public Access

Grand Challenges in Immersive Analytics

Authors Info & Claims
Published:07 May 2021Publication History

ABSTRACT

Immersive Analytics is a quickly evolving field that unites several areas such as visualisation, immersive environments, and human-computer interaction to support human data analysis with emerging technologies. This research has thrived over the past years with multiple workshops, seminars, and a growing body of publications, spanning several conferences. Given the rapid advancement of interaction technologies and novel application domains, this paper aims toward a broader research agenda to enable widespread adoption. We present 17 key research challenges developed over multiple sessions by a diverse group of 24 international experts, initiated from a virtual scientific workshop at ACM CHI 2020. These challenges aim to coordinate future work by providing a systematic roadmap of current directions and impending hurdles to facilitate productive and effective applications for Immersive Analytics.

References

  1. S. Aarthi and S. Chitrakala. 2017. Scene understanding - A survey. In International Conference on Computer, Communication, and Signal Processing: Special Focus on IoT, ICCCSP 2017. 1–4. https://doi.org/10.1109/ICCCSP.2017.7944094Google ScholarGoogle ScholarCross RefCross Ref
  2. Jason Alexander, Anne Roudaut, Jürgen Steimle, Kasper Hornbæk, Miguel Bruns Alonso, Sean Follmer, and Timothy Merritt. 2018. Grand challenges in Shape-changing interface research. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2018-April. 1–14. https://doi.org/10.1145/3173574.3173873Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Apple Inc.2020. ARAnchor, ARKit. https://developer.apple.com/documentation/arkit/aranchorGoogle ScholarGoogle Scholar
  4. Clemens Arth, Christian Pirchheim, Jonathan Ventura, Dieter Schmalstieg, and Vincent Lepetit. 2015. Instant Outdoor Localization and SLAM Initialization from 2.5D Maps. IEEE Transactions on Visualization and Computer Graphics 21, 11 (nov 2015), 1309–1318. https://doi.org/10.1109/TVCG.2015.2459772Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benjamin Bach, Maxime Cordeil, Tim Dwyer, Bongshin Lee, Bahador Saket, Alex Endert, Christopher Collins, and Sheelagh Carpendale. 2017. Immersive analytics: Exploring future visualization and interaction technologies for data analytics. In IEEE VIS, Accepted Workshop, Vol. 2.Google ScholarGoogle Scholar
  6. Benjamin Bach, Maxime Cordeil, Engelke, Barrett Ulrich Ens, Marcos Serrano, and Wesley Willett. 2019. Interaction design & prototyping for immersive analytics. In Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290607.3299019Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Benjamin Bach, Raimund Dachselt, Sheelagh Carpendale, Tim Dwyer, Christopher Collins, and Bongshin Lee. 2016. Immersive analytics: Exploring future interaction and visualization technologies for data analytics. In Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces: Nature Meets Interactive Surfaces, ISS 2016(ISS ’16). Association for Computing Machinery, New York, NY, USA, 529–533. https://doi.org/10.1145/2992154.2996365Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime Cordeil, and Hanspeter Pfister. 2018. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?IEEE Transactions on Visualization and Computer Graphics 24, 1(2018), 457–467. https://doi.org/10.1109/TVCG.2017.2745941Google ScholarGoogle ScholarCross RefCross Ref
  9. Benjamin Bach, Ronell Sicat, Hanspeter Pfister, and Aaron Quigley. 2017. Drawing into the AR-Canvas: Designing Embedded Visualizations for Augmented Reality. Technical Report. http://www.aviz.fr/~bbach/arcanvas/Bach2017arcanvas.pdfGoogle ScholarGoogle Scholar
  10. Andrea Batch, Andrew Cunningham, Maxime Cordeil, Niklas Elmqvist, Tim Dwyer, Bruce H. Thomas, and Kim Marriott. 2020. There Is No Spoon: Evaluating Performance, Space Use, and Presence with Expert Domain Users in Immersive Analytics. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 536–546. https://doi.org/10.1109/TVCG.2019.2934803Google ScholarGoogle ScholarCross RefCross Ref
  11. Verena Biener, Daniel Schneider, Travis Gesslein, Alexander Otte, Bastian Kuth, Per Ola Kristensson, Eyal Ofek, Michel Pahud, and Jens Grubert. 2020. Breaking the Screen: Interaction across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers. In IEEE Transactions on Visualization and Computer Graphics, Vol. 26. 3490–3502. https://doi.org/10.1109/TVCG.2020.3023567 arxiv:2008.04559Google ScholarGoogle ScholarCross RefCross Ref
  12. Mark Billinghurst, Maxime Cordeil, Anastasia Bezerianos, and Todd Margolis. 2018. Collaborative immersive analytics. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11190 LNCS. Springer, 221–257. https://doi.org/10.1007/978-3-030-01388-2_8Google ScholarGoogle ScholarCross RefCross Ref
  13. Óscar Blanco-Novoa, Paula Fraga-Lamas, Miguel A. Vilar-Montesinos, and Tiago M. Fernández-Caramés. 2020. Creating the internet of augmented things: An open-source framework to make iot devices and augmented and mixed reality systems talk to each other. Sensors (Switzerland) 20, 11 (2020), 1–26. https://doi.org/10.3390/s20113328Google ScholarGoogle ScholarCross RefCross Ref
  14. Wolfgang Büschel, Annett Mitschick, Thomas Meyer, and Raimund Dachselt. 2019. Investigating smartphone-based pan and zoom in 3D data spaces in augmented reality. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2019(MobileHCI ’19). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3338286.3340113Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Peter William Scott Butcher, Nigel W. John, and Panagiotis D. Ritsos. 2020. VRIA: A Web-based Framework for Creating Immersive Analytics Experiences. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/tvcg.2020.2965109Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Simon Butscher, Sebastian Hubenschmid, Jens Müller, Johannes Fuchs, and Harald Reiterer. 2018. Clusters, trends, and outliers: How Immersive technologies can facilitate the collaborative analysis of multidimensional data. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2018-April. 1–12. https://doi.org/10.1145/3173574.3173664Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Stuart K Card. 2018. The psychology of human-computer interaction. Crc Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Stephen J. Ceci, Dan M. Kahan, and Donald Braman. 2010. The WEIRD are even weirder than you think: Diversifying contexts is as important as diversifying samples. Behavioral and Brain Sciences 33, 2-3 (2010), 87–88. https://doi.org/10.1017/S0140525X10000063Google ScholarGoogle ScholarCross RefCross Ref
  19. Ho Seung Cha, Seong Jun Choi, and Chang Hwan Im. 2020. Real-time recognition of facial expressions using facial electromyograms recorded around the eyes for social virtual reality applications. IEEE Access 8(2020), 62065–62075. https://doi.org/10.1109/ACCESS.2020.2983608Google ScholarGoogle ScholarCross RefCross Ref
  20. Tom Chandler, Maxime Cordeil, Tobias Czauderna, Tim Dwyer, Jaroslaw Glowacki, Cagatay Goncu, Matthias Klapperstueck, Karsten Klein, Kim MAR-RIOTT, and Falk Schreiber. 2015. Immersive Analytics. In 2015 Big Data Visual Analytics (BDVA)(2015). In IEEE, Sept. 1–8.Google ScholarGoogle Scholar
  21. Zhutian Chen, Yijia Su, Yifang Wang, Qianwen Wang, Huamin Qu, and Yingcai Wu. 2020. MARVisT: Authoring Glyph-Based Visualization in Mobile Augmented Reality. IEEE Transactions on Visualization and Computer Graphics 26, 8(2020), 2645–2658. https://doi.org/10.1109/TVCG.2019.2892415Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zhutian Chen, Wai Tong, Qianwen Wang, Benjamin Bach, and Huamin Qu. 2020. Augmenting Static Visualizations with PapARVis Designer. In Conference on Human Factors in Computing Systems - Proceedings. 1–12. https://doi.org/10.1145/3313831.3376436Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014. Supporting novice to expert transitions in user interfaces. Comput. Surveys 47, 2 (nov 2014). https://doi.org/10.1145/2659796Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Maxime Cordeil, Benjamin Bach, Andrew Cunningham, Bastian Montoya, Ross T. Smith, Bruce H. Thomas, and Tim Dwyer. 2020. Embodied Axes: Tangible, Actuated Interaction for 3D Augmented Reality Data Spaces. In Conference on Human Factors in Computing Systems - Proceedings. 1–12. https://doi.org/10.1145/3313831.3376613Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Maxime Cordeil, Benjamin Bach, Yongchao Li, Elliott Wilson, and Tim Dwyer. 2017. Design space for spatio-data coordination: Tangible interaction devices for immersive information visualisation. In IEEE Pacific Visualization Symposium. IEEE, 46–50. https://doi.org/10.1109/PACIFICVIS.2017.8031578Google ScholarGoogle ScholarCross RefCross Ref
  26. Maxime Cordeil, Andrew Cunningham, Benjamin Bach, Christophe Hurter, Bruce H. Thomas, Kim Marriott, and Tim Dwyer. 2019. IATK: An immersive analytics toolkit. In 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 200–209. https://doi.org/10.1109/VR.2019.8797978Google ScholarGoogle ScholarCross RefCross Ref
  27. Maxime Cordeil, Andrew Cunningham, Tim Dwyer, Bruce H. Thomas, and Kim Marriott. 2017. ImAxes: Immersive axes as embodied affordances for interactive multivariate data visualisation. UIST 2017 - Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology(2017), 71–83. https://doi.org/10.1145/3126594.3126613Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Maxime Cordeil and Tim Dwyer. 2019. Introduction to IATK: An immersive visual analytics toolkit. In ISS 2019 - Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces. 431–435. https://doi.org/10.1145/3343055.3361927Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Maxime Cordeil, Tim Dwyer, Karsten Klein, Bireswar Laha, Kim Marriott, and Bruce H. Thomas. 2017. Immersive Collaborative Analysis of Network Connectivity: CAVE-style or Head-Mounted Display?IEEE Transactions on Visualization and Computer Graphics 23, 1(2017), 441–450. https://doi.org/10.1109/TVCG.2016.2599107Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kurtis Danyluk and Wesley Willett. 2019. Evaluating the Performance of Virtual Reality Navigation Techniques for Large Environments. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 11542 LNCS. Springer, 203–215. https://doi.org/10.1007/978-3-030-22514-8_17Google ScholarGoogle ScholarCross RefCross Ref
  31. Ciro Donalek, S. G. Djorgovski, Alex Cioc, Anwell Wang, Jerry Zhang, Elizabeth Lawler, Stacy Yeh, Ashish Mahabal, Matthew Graham, Andrew Drake, Scott Davidoff, Jeffrey S. Norris, and Giuseppe Longo. 2015. Immersive and collaborative data visualization using virtual reality platforms. In Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014. IEEE, 609–614. https://doi.org/10.1109/BigData.2014.7004282Google ScholarGoogle ScholarCross RefCross Ref
  32. Andre Doucette, Carl Gutwin, Regan Mandryk, Miguel Nacenta, and Sunny Sharma. 2013. Sometimes when we touch: How arm embodiments change reaching and coordination on digital tables. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW(CSCW ’13). Association for Computing Machinery, New York, NY, USA, 193–202. https://doi.org/10.1145/2441776.2441799Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tafadzwa Joseph Dube and Ahmed Sabbir Arif. 2019. Text Entry in Virtual Reality: A Comprehensive Review of the Literature. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Masaaki Kurosu (Ed.), Vol. 11567 LNCS. Springer International Publishing, Cham, 419–437. https://doi.org/10.1007/978-3-030-22643-5_33Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tim Dwyer, Kim Marriott, Tobias Isenberg, Karsten Klein, Nathalie Riche, Falk Schreiber, Wolfgang Stuerzlinger, and Bruce H. Thomas. 2018. Immersive analytics: an introduction. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11190 LNCS. Springer Verlag, 1–23. https://doi.org/10.1007/978-3-030-01388-2_1Google ScholarGoogle ScholarCross RefCross Ref
  35. Tim Dwyer, Nathalie Henry Riche, Karsten Klein, Wolfgang Stuerzlinger, and Bruce Thomas. 2016. Immersive Analytics (Dagstuhl Seminar 16231). Dagstuhl Reports 6, 6 (2016), 1–9. https://doi.org/10.4230/DagRep.6.6.1Google ScholarGoogle ScholarCross RefCross Ref
  36. Anna Eiberger, Per Ola Kristensson, Susanne Mayr, Matthias Kranz, and Jens Grubert. 2019. Effects of depth layer switching between an optical see-through head-mounted display and a body-proximate display. In Symposium on Spatial User Interaction. 1–9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Niklas Elmqvist and Pourang Irani. 2013. Ubiquitous analytics: Interacting with big data anywhere, anytime. Computer 46, 4 (2013), 86–89. https://doi.org/10.1109/MC.2013.147Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Niklas Elmqvist, Andrew Vande Moere, Hans Christian Jetter, Daniel Cernea, Harald Reiterer, and T. J. Jankun-Kelly. 2011. Fluid interaction for information visualization. Information Visualization 10, 4 (oct 2011), 327–340. https://doi.org/10.1177/1473871611413180Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Niklas Elmqvist and Ji Soo Yi. 2015. Patterns for visualization evaluation. Information Visualization 14, 3 (2015), 250–269. https://doi.org/10.1177/1473871613513228Google ScholarGoogle ScholarCross RefCross Ref
  40. Neven A.M. ElSayed, Bruce H. Thomas, Kim Marriott, Julia Piantadosi, and Ross T. Smith. 2016. Situated Analytics: Demonstrating immersive analytical tools with Augmented Reality. Journal of Visual Languages and Computing 36 (2016), 13–23. https://doi.org/10.1016/j.jvlc.2016.07.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Neven A.M. Elsayed, Bruce H. Thomas, Ross T. Smith, Kim Marriott, and Julia Piantadosi. 2015. Using augmented reality to support situated analytics. In 2015 IEEE Virtual Reality Conference, VR 2015 - Proceedings. 175–176. https://doi.org/10.1109/VR.2015.7223352Google ScholarGoogle ScholarCross RefCross Ref
  42. Ulrich Engelke, Maxime Cordeil, Andrew Cunningham, and Barrett Ens. 2019. Immersive analytics. In SIGGRAPH Asia 2019 Courses, SA 2019(SA ’19). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3355047.3359391Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ulrich Engelke, Maxime Cordeil, Andrew Cunningham, and Barrett Ens. 2019. Immersive analytics. SIGGRAPH Asia 2019 Courses, SA 2019 (may 2019). https://doi.org/10.1145/3355047.3359391Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani, and George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual programming for authoring and understanding intelligent environments. Proceedings - Graphics Interface(2017), 156–163. https://doi.org/10.20380/gi2017.20Google ScholarGoogle ScholarCross RefCross Ref
  45. Barrett Ens, Benjamin Bach, Maxime Cordeil, Ulrich Engelke, Marcos Serrano, and Wesley Willett. 2020. Envisioning future productivity for immersive analytics. In Conference on Human Factors in Computing Systems - Proceedings(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3334480.3375145Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Barrett Ens, Sarah Goodwin, Arnaud Prouzeau, Fraser Anderson, Florence Y. Wang, Samuel Gratzl, Zac Lucarelli, Brendan Moyle, Jim Smiley, and Tim Dwyer. 2020. Uplift: A Tangible and Immersive Tabletop System for Casual Collaborative Visual Analytics. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/tvcg.2020.3030334Google ScholarGoogle ScholarCross RefCross Ref
  47. Barrett Ens and Pourang Irani. 2017. Spatial analytic interfaces: Spatial user interfaces for in situ visual analytics. IEEE Computer Graphics and Applications 37, 2 (2017), 66–79. https://doi.org/10.1109/MCG.2016.38Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J A W Filho, W Stuerzlinger, and L Nedel. 2020. Evaluating an Immersive Space-Time Cube Geovisualization for Intuitive Trajectory Data Exploration. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 514–524. https://doi.org/10.1109/TVCG.2019.2934415Google ScholarGoogle ScholarCross RefCross Ref
  49. George W. Fitzmaurice. 1993. Situated information spaces and spatially aware palmtop computers. Commun. ACM 36, 7 (1993), 39–49. https://doi.org/10.1145/159544.159566Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. InFORM: Dynamic Physical Affordances and Constraints through shape and object actuation. In UIST 2013 - Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology(UIST ’13). Association for Computing Machinery, New York, NY, USA, 417–426. https://doi.org/10.1145/2501988.2502032Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Adrien Fonnet and Yannick Prie. 2019. Survey of Immersive Analytics. IEEE Transactions on Visualization and Computer Graphics (2019), 1–1. https://doi.org/10.1109/tvcg.2019.2929033Google ScholarGoogle ScholarCross RefCross Ref
  52. Jann Philipp Freiwald, Nicholas Katzakis, and Frank Steinicke. 2018. Camera time warp: Compensating latency in video see-through head-mounted-displays for reduced cybersickness effects. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST(VRST ’18). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3281505.3281521Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Joseph L. Gabbard, Divya Gupta Mehra, and J. Edward Swan. 2019. Effects of ar display context switching and focal distance switching on human performance. IEEE Transactions on Visualization and Computer Graphics 25, 6(2019), 2228–2241. https://doi.org/10.1109/TVCG.2018.2832633Google ScholarGoogle ScholarCross RefCross Ref
  54. Travis Gesslein, Verena Biener, Philipp Gagel, Daniel Schneider, Per Ola Kristensson, Eyal Ofek, Michel Pahud, and Jens Grubert. 2020. Pen-based interaction with spreadsheets in mobile virtual reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). arxiv:2008.04543Google ScholarGoogle ScholarCross RefCross Ref
  55. Google LLC. 2020. Anchors, ARCore. https://developers.google.com/ar/develop/developer-guides/anchorsGoogle ScholarGoogle Scholar
  56. Saul Greenberg, Michael Boyle, and Jason Laberge. 1999. PDAs and shared public displays: Making personal information public, and public information personal. Personal and Ubiquitous Computing 3, 1-2 (1999), 54–64. https://doi.org/10.1007/bf01305320Google ScholarGoogle ScholarCross RefCross Ref
  57. Jens Grubert, Tobias Langlotz, Stefanie Zollmann, and Holger Regenbrecht. 2017. Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE Transactions on Visualization and Computer Graphics 23, 6(2017), 1706–1724. https://doi.org/10.1109/TVCG.2016.2543720Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Jens Grubert, Eyal Ofek, Michel Pahud, and Per Ola Kristensson. 2020. Back to the Future: Revisiting Mouse and Keyboard Interaction for HMD-based Immersive Analytics. In ACM CHI 2020 4th Workshop on Immersive Analytics: Envisioning Future Productivity for Immersive Analytics. arxiv:2009.02927http://arxiv.org/abs/2009.02927Google ScholarGoogle Scholar
  59. Richard Hackathorn and Todd Margolis. 2017. Immersive analytics: Building virtual data worlds for collaborative decision support. In 2016 Workshop on Immersive Analytics, IA 2016. 44–47. https://doi.org/10.1109/IMMERSIVE.2016.7932382Google ScholarGoogle ScholarCross RefCross Ref
  60. Alireza Hassani, Alexey Medvedev, Arkady Zaslavsky, Pari Delir Haghighi, Prem Prakash Jayaraman, and Sea Ling. 2019. Efficient execution of complex context queries to enable near real-time smart IoT applications. Sensors (Switzerland) 19, 24 (2019). https://doi.org/10.3390/s19245457Google ScholarGoogle ScholarCross RefCross Ref
  61. Christopher Healey and James Enns. 2012. Attention and visual memory in visualization and computer graphics. IEEE Transactions on Visualization and Computer Graphics 18, 7(2012), 1170–1188. https://doi.org/10.1109/TVCG.2011.127Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Morton Leonard Heilig. 1992. EL Cine del Futuro: The Cinema of the Future. Presence: Teleoperators and Virtual Environments 1, 3(1992), 279–294. https://doi.org/10.1162/pres.1992.1.3.279Google ScholarGoogle ScholarCross RefCross Ref
  63. Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang Irani. 2014. Consumed endurance: A metric to quantify arm fatigue of mid-air interactions. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’14). Association for Computing Machinery, New York, NY, USA, 1063–1072. https://doi.org/10.1145/2556288.2557130Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Ilyena Hirskyj-Douglas, Mikko Kytö, and David McGookin. 2019. Head-mounted displays, smartphones, or smartwatches? – Augmenting conversations with digital representation of self. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (nov 2019). https://doi.org/10.1145/3359281Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. James Hollan, Edwin Hutchins, and David Kirsh. 2000. Distributed Cognition: Toward a New Foundation for Human-Computer Interaction Research. ACM Transactions on Computer-Human Interaction 7, 2(2000), 174–196. https://doi.org/10.1145/353485.353487Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Jim Hollan and Scott Stornetta. 1992. Beyond being there. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’92). Association for Computing Machinery, New York, NY, USA, 119–125. https://doi.org/10.1145/142750.142769Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yi Jheng Huang, Takanori Fujiwara, Yun Xuan Lin, Wen Chieh Lin, and Kwan Liu Ma. 2017. A gesture system for graph visualization in virtual reality environments. In IEEE Pacific Visualization Symposium. IEEE, 41–45. https://doi.org/10.1109/PACIFICVIS.2017.8031577Google ScholarGoogle ScholarCross RefCross Ref
  68. Hikaru Ibayashi, Yuta Sugiura, Daisuke Sakamoto, Natsuki Miyata, Mitsunori Tada, Takashi Okuma, Takeshi Kurata, Masaaki Mochimaru, and Takeo Igarashi. 2015. Dollhouse VR: A multi-view, multi-user collaborative design workspace with VR technology. In SIGGRAPH Asia 2015 Emerging Technologies, SA 2015(SA ’15). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2818466.2818480Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Petra Isenberg, Niklas Elmqvist, Jean Scholtz, Daniel Cernea, Kwan Liu Ma, and Hans Hagen. 2011. Collaborative visualization: Definition, challenges, and research agenda. Information Visualization 10, 4 (oct 2011), 310–326. https://doi.org/10.1177/1473871611412817Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Alexander Ivanov, Kurtis Danyluk, Christian Jacob, and Wesley Willett. 2019. A walk among the data. IEEE Computer Graphics and Applications 39, 3 (2019), 19–28. https://doi.org/10.1109/MCG.2019.2898941Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Alexander Ivanov, Kurtis Thorvald Danyluk, and Wesley Willett. 2018. Exploration & anthropomorphism in immersive unit visualizations. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2018-April. 1–6. https://doi.org/10.1145/3170427.3188544Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Raphaël James, Anastasia Bezerianos, Olivier Chapuis, Maxime Cordeil, Tim Dwyer, and Arnaud Prouzeau. 2020. Personal+Context navigation: combining AR and shared displays in Network Path-following. In arXiv. CHCCS/SCDHM. arxiv:2005.10612Google ScholarGoogle Scholar
  73. Paul E. Ketelaar and Mark van Balen. 2018. The smartphone as your follower: The role of smartphone literacy in the relation between privacy concerns, attitude and behaviour towards phone-embedded tracking. Computers in Human Behavior 78 (2018), 174–182. https://doi.org/10.1016/j.chb.2017.09.034Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Gregory Kramida. 2016. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Transactions on Visualization and Computer Graphics 22, 7(2016), 1912–1931. https://doi.org/10.1109/TVCG.2015.2473855Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. M. Kraus, N. Weiler, D. Oelke, J. Kehrer, D. A. Keim, and J. Fuchs. 2020. The Impact of Immersion on Cluster Identification Tasks. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 525–535. https://doi.org/10.1109/TVCG.2019.2934395Google ScholarGoogle ScholarCross RefCross Ref
  76. Oh Hyun Kwon, Chris Muelder, Kyungwon Lee, and Kwan Liu Ma. 2016. A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Transactions on Visualization and Computer Graphics 22, 7(2016), 1802–1815. https://doi.org/10.1109/TVCG.2016.2520921Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine Plaisant, and Sheelagh Carpendale. 2012. Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics 18, 9(2012), 1520–1536. https://doi.org/10.1109/TVCG.2011.279Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Benjamin Lee, Dave Brown, Bongshin Lee, Christophe Hurter, Steven Drucker, and Tim Dwyer. 2020. Data Visceralization: Enabling Deeper Understanding of Data Using Virtual Reality. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/tvcg.2020.3030435 arxiv:2009.00059Google ScholarGoogle ScholarCross RefCross Ref
  79. Benjamin Lee, Xiaoyun Hu, Maxime Cordeil, Arnaud Prouzeau, Bernhard Jenny, and Tim Dwyer. 2020. Shared Surfaces and Spaces: Collaborative Data Visualisation in a Co-located Immersive Environment. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/tvcg.2020.3030450 arxiv:2009.00050Google ScholarGoogle ScholarCross RefCross Ref
  80. Sarah M. Lehman, Haibin Ling, and Chiu C. Tan. 2020. ARCHIE: A User-Focused Framework for Testing Augmented Reality Applications in the Wild. In Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020. IEEE, 903–912. https://doi.org/10.1109/VR46266.2020.1581006269928Google ScholarGoogle ScholarCross RefCross Ref
  81. Jason Leigh, Krishna Bharadwaj, Arthur Nishimoto, Lance Long, Jason Haga, John Burns, Francis Cristobal, Jared McLean, Roberto Pelayo, Mahdi Belcaid, Dylan Kobayashi, Nurit Kirshenbaum, Troy Wooton, Alberto Gonzalez, Luc Renambot, Andrew Johnson, Maxine Brown, and Andrew Burks. 2019. Usage patterns of wideband display environments in e-science research, development and training. In Proceedings - IEEE 15th International Conference on eScience, eScience 2019. 301–310. https://doi.org/10.1109/eScience.2019.00041Google ScholarGoogle ScholarCross RefCross Ref
  82. Daniel Leithinger, Sean Follmer, Alex Olwal, Samuel Luescher, Akimitsu Hogge, Jinha Lee, and Hiroshi Ishii. 2013. Sublimate: State-changing virtual and physical rendering to augment interaction with shape displays. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’13). Association for Computing Machinery, New York, NY, USA, 1441–1450. https://doi.org/10.1145/2470654.2466191Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Li Jia Li, Richard Socher, and Li Fei-Fei. 2009. Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, Vol. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2036–2043. https://doi.org/10.1109/CVPRW.2009.5206718Google ScholarGoogle ScholarCross RefCross Ref
  84. Ying Li Lin, Tsai Yi Chou, Yu Cheng Lieo, Yu Cheng Huang, and Ping Hsuan Han. 2018. TransFork: Using olfactory device for augmented tasting experience with video see-through head-mounted display. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST. 1–2. https://doi.org/10.1145/3281505.3281560Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-aware online adaptation of mixed reality interfaces. In UIST 2019 - Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology(UIST ’19). Association for Computing Machinery, New York, NY, USA, 147–160. https://doi.org/10.1145/3332165.3347945Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Jiazhou Liu, Arnaud Prouzeau, Barrett Ens, and Tim Dwyer. 2020. Design and Evaluation of Interactive Small Multiples Data Visualisation in Immersive Spaces. In Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020. IEEE, 588–597. https://doi.org/10.1109/VR46266.2020.1581122519414Google ScholarGoogle ScholarCross RefCross Ref
  87. G. Elisabeta Marai, Jason Leigh, and Andrew Johnson. 2019. Immersive analytics lessons from the electronic visualization laboratory: A 25-year perspective. IEEE Computer Graphics and Applications 39, 3 (2019), 54–66. https://doi.org/10.1109/MCG.2019.2901428Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. G. Elisabeta Marai, Jason Leigh, and Andrew Johnson. 2019. Immersive analytics lessons from the electronic visualization laboratory: A 25-year perspective. IEEE Computer Graphics and Applications 39, 3 (2019), 54–66. https://doi.org/10.1109/MCG.2019.2901428Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Kim Marriott, Jian Chen, Marcel Hlawatsch, Takayuki Itoh, Miguel A. Nacenta, Guido Reina, and Wolfgang Stuerzlinger. 2018. Immersive analytics: time to reconsider the value of 3d for information visualisation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11190 LNCS. Springer Verlag, 25–55. https://doi.org/10.1007/978-3-030-01388-2_2Google ScholarGoogle ScholarCross RefCross Ref
  90. Katsutoshi Masai, Maki Sugimoto, Kai Kunze, and Mark Billinghurst. 2016. Empathy Glasses. In Conference on Human Factors in Computing Systems - Proceedings(CHI EA ’16, Vol. 07-12-May-2016). ACM, New York, NY, USA, 1257–1263. https://doi.org/10.1145/2851581.2892370Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Jon McCormack, Jonathan C. Roberts, Benjamin Bach, Carla Dal Sasso Freitas, Takayuki Itoh, Christophe Hurter, and Kim Marriott. 2018. Multisensory immersive analytics. Vol. 11190 LNCS. Springer International Publishing, Cham, 57–94. https://doi.org/10.1007/978-3-030-01388-2_3Google ScholarGoogle ScholarCross RefCross Ref
  92. David McGookin, Euan Robertson, and Stephen Brewster. 2010. Clutching at straws: Using tangible interaction to provide non-visual access to graphs. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’10, Vol. 3). Association for Computing Machinery, New York, NY, USA, 1715–1724. https://doi.org/10.1145/1753326.1753583Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Brian E. Mennecke, Janea L. Triplett, Lesya M. Hassall, Zayira Jordán Conde, and Rex Heer. 2011. An Examination of a Theory of Embodied Social Presence in Virtual Worlds. Decision Sciences 42, 2 (apr 2011), 413–450. https://doi.org/10.1111/j.1540-5915.2011.00317.xGoogle ScholarGoogle ScholarCross RefCross Ref
  94. Microsoft Inc.2019. Spatial anchors. https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-anchorsGoogle ScholarGoogle Scholar
  95. Florian Floyd Mueller, Pedro Lopes, Paul Strohmeier, Wendy Ju, Caitlyn Seim, Martin Weigel, Suranga Nanayakkara, Marianna Obrist, Zhuying Li, Joseph Delfa, Jun Nishida, Elizabeth M. Gerber, Dag Svanaes, Jonathan Grudin, Stefan Greuter, Kai Kunze, Thomas Erickson, Steven Greenspan, Masahiko Inami, Joe Marshall, Harald Reiterer, Katrin Wolf, Jochen Meyer, Thecla Schiphorst, Dakuo Wang, and Pattie Maes. 2020. Next Steps for Human-Computer Integration. In Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3313831.3376242Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Tamara Munzner. 2014. Visualization Analysis and Design. CRC press. https://doi.org/10.1201/b17511Google ScholarGoogle ScholarCross RefCross Ref
  97. Niantic. 2020. Pokémon GO. https://pokemongolive.com/en/Google ScholarGoogle Scholar
  98. Donald A. Norman. 2010. The way I see it: Natural user interfaces are not natural. Interactions 17, 3 (may 2010), 6–10. https://doi.org/10.1145/1744161.1744163Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Natalya F. Noy and Deborah L. McGuinness. 2001. Ontology Development 101: A Guide to Creating Your First Ontology. Technical Report. Stanford University. 25 pages. https://doi.org/10.1016/j.artmed.2004.01.014Google ScholarGoogle Scholar
  100. Gary M. Olson and Judith S. Olson. 2000. Distance matters. Human-Computer Interaction 15, 2-3 (2000), 139–178. https://doi.org/10.1207/S15327051HCI1523_4Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Sharon Oviatt. 2006. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th Annual ACM International Conference on Multimedia, MM 2006(MM ’06). Association for Computing Machinery, New York, NY, USA, 871–880. https://doi.org/10.1145/1180639.1180831Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Raymond Pagliarini. 2006. The World Café – Shaping Our Futures through Conversations that Matter. Vol. 19. Berrett-Koehler Publishers. 266–268 pages. https://doi.org/10.1108/09534810610648951Google ScholarGoogle ScholarCross RefCross Ref
  103. Biswaksen Patnaik, Andrea Batch, and Niklas Elmqvist. 2019. Information olfactation: Harnessing scent to convey data. IEEE Transactions on Visualization and Computer Graphics 25, 1(2019), 726–736. https://doi.org/10.1109/TVCG.2018.2865237Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Gary Perelman, Marcos Serrano, Mathieu Raynal, Celia Picard, Mustapha Derras, and Emmanuel Dubois. 2016. DECO: A design space for device composition. In DIS 2016 - Proceedings of the 2016 ACM Conference on Designing Interactive Systems: Fuse(DIS ’16). Association for Computing Machinery, New York, NY, USA, 435–446. https://doi.org/10.1145/2901790.2901893Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. David Pinelle and Carl Gutwin. 2002. Groupware walkthrough: Adding context to groupware usability evaluation. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 4. 455–462.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Peter Pirolli and Stuart Card. 2005. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proceedings of International Conference on Intelligence Analysis, Vol. 2005. McLean, VA, USA, 2–4. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Sensemaking+Process+and+Leverage+Points+for+Analyst+Technology+as+Identified+Through+Cognitive+Task+Analysis#0Google ScholarGoogle Scholar
  107. Thammathip Piumsomboon, Youngho Lee, Gun Lee, and Mark Billinghurst. 2017. CoVAR. In SIGGRAPH Asia 2017 Emerging Technologies on - SA ’17. ACM Press.Google ScholarGoogle Scholar
  108. Arnaud Prouzeau, Maxime Cordeil, Clement Robin, Barrett Ens, Bruce H. Thomas, and Tim Dwyer. 2019. Scaptics and highlight-planes: Immersive interaction techniques for finding occluded features in 3D scatterplots. In Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290605.3300555Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Arnaud Prouzeau, Yuchen Wang, Barrett Ens, Wesley Willett, and Tim Dwyer. 2020. Corsican Twin: Authoring in Situ Augmented Reality Visualisations in Virtual Reality. In ACM International Conference Proceeding Series. https://doi.org/10.1145/3399715.3399743Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Nimesha Ranasinghe and Ellen Yi Luen Do. 2016. Digital Lollipop: Studying Electrical Stimulation on the Human Tongue to Simulate Taste Sensations. ACM Transactions on Multimedia Computing, Communications and Applications 13, 1(2016), 1–22. https://doi.org/10.1145/2996462Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Patrick Reipschlager, Tamara Flemisch, and Raimund Dachselt. 2020. Personal Augmented Reality for Information Visualization on Large Interactive Displays. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/tvcg.2020.3030460 arxiv:2009.03237Google ScholarGoogle ScholarCross RefCross Ref
  112. Adi Robertson. 2020. Facebook is making Oculus’ worst feature unavoidable. https://www.theverge.com/2020/8/19/21375118/oculus-facebook-account-login-data-privacy-controversy-developers-competitionGoogle ScholarGoogle Scholar
  113. Houssem Saidi, Marcos Serrano, Pourang Irani, Christophe Hurter, and Emmanuel Dubois. 2019. On-Body Tangible Interaction: Using the Body to Support Tangible Manipulations for Immersive Environments. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(Human-Computer Interaction – INTERACT 2019, Vol. 11749 LNCS). Springer International Publishing, Paphos, Cyprus, 471–492. https://doi.org/10.1007/978-3-030-29390-1_26Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Kadek Ananta Satriadi, Barrett Ens, Maxime Cordeil, Tobias Czauderna, and Bernhard Jenny. 2020. Maps around Me: 3D Multiview Layouts in Immersive Spaces. Proceedings of the ACM on Human-Computer Interaction 4, ISS(2020). https://doi.org/10.1145/3427329Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Kadek Ananta Satriadi, Barrett Ens, Maxime Cordeil, Bernhard Jenny, Tobias Czauderna, and Wesley Willett. 2019. Augmented reality map navigation with freehand gestures. In 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings. 593–603. https://doi.org/10.1109/VR.2019.8798340Google ScholarGoogle ScholarCross RefCross Ref
  116. Dieter Schmalstieg and Tobias Hollerer. 2016. Augmented reality: principles and practice. Addison-Wesley Professional.Google ScholarGoogle Scholar
  117. Jean Scholtz and Sunny Consolvo. 2004. Toward a framework for evaluating ubiquitous computing applications. IEEE Pervasive Computing 3, 2 (2004), 82–88. https://doi.org/10.1109/MPRV.2004.1316826Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Michael Sedlmair, Miriah Meyer, and Tamara Munzner. 2012. Design study methodology: Reflections from the trenches and the stacks. IEEE Transactions on Visualization and Computer Graphics 18, 12(2012), 2431–2440. https://doi.org/10.1109/TVCG.2012.213Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Mickael Sereno, Lonni Besançon, and Tobias Isenberg. 2019. Supporting Volumetric Data Visualization and Analysis by Combining Augmented Reality Visuals with Multi-Touch Input. European Conference on Computer Vision(2019), 16–18. https://hal.inria.fr/hal-02123904Google ScholarGoogle Scholar
  120. Marcos Serrano, Barrett Ens, and Pourang Irani. 2014. Exploring the use of hand-to-face input for interacting with head-worn displays. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’14). Association for Computing Machinery, New York, NY, USA, 3181–3190. https://doi.org/10.1145/2556288.2556984Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Marcos Serrano, Barrett Ens, Xing Dong Yang, and Pourang Irani. 2015. Gluey: Developing a head-worn display interface to unify the interaction experience in distributed display environments. In MobileHCI 2015 - Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services. ACM Press, New York, New York, USA, 161–171. https://doi.org/10.1145/2785830.2785838Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Ben Shneiderman. 1982. The future of interactive systems and the emergence of direct manipulation. Behaviour and Information Technology 1, 3 (1982), 237–256. https://doi.org/10.1080/01449298208914450Google ScholarGoogle ScholarCross RefCross Ref
  123. Ronell Sicat, Jiabao Li, Junyoung Choi, Maxime Cordeil, Won Ki Jeong, Benjamin Bach, and Hanspeter Pfister. 2019. DXR: A Toolkit for Building Immersive Data Visualizations. IEEE Transactions on Visualization and Computer Graphics 25, 1(2019), 715–725. https://doi.org/10.1109/TVCG.2018.2865152Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Sirikasem Sirilak and Paisarn Muneesawang. 2018. A New Procedure for Advancing Telemedicine Using the HoloLens. IEEE Access 6(2018), 60224–60233. https://doi.org/10.1109/ACCESS.2018.2875558Google ScholarGoogle ScholarCross RefCross Ref
  125. Richard Skarbez, Nicholas F. Polys, J. Todd Ogle, Chris North, and Doug A. Bowman. 2019. Immersive Analytics: Theory and Research Agenda. Frontiers in Robotics and AI 6 (2019), 82. https://doi.org/10.3389/frobt.2019.00082Google ScholarGoogle ScholarCross RefCross Ref
  126. Mel Slater and Sylvia Wilbur. 1997. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments 6, 6(1997), 603–616. https://doi.org/10.1162/pres.1997.6.6.603Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Harrison Jesse Smith and Michael Neff. 2018. Communication behavior in Embodied virtual reality. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2018-April. {ACM} Press. https://doi.org/10.1145/3173574.3173863Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson. 2000. How does radical collocation help a team succeed?. In Proceedings of the ACM Conference on Computer Supported Cooperative Work(CSCW ’00). Association for Computing Machinery, New York, NY, USA, 339–346. https://doi.org/10.1145/358916.359005Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Teoman Ulusoy, Kurtis Danyluk, and Wesley Willett. 2018. Beyond the Physical: Examining Scale and Annotation in Virtual Reality Visualizations. Technical Report. Department of Computer Science, University of Calgary. http://hdl.handle.net/1880/108786Google ScholarGoogle Scholar
  130. John Vilk, David Molnar, Benjamin Livshits, Eyal Ofek, Chris Rossbach, Alexander Moshchuk, Helen J. Wang, and Ran Gal. 2015. SurroundWeb: Mitigating privacy concerns in a 3D web browser. In Proceedings - IEEE Symposium on Security and Privacy, Vol. 2015-July. 431–446. https://doi.org/10.1109/SP.2015.33Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Alla Vovk, Fridolin Wild, Will Guest, and Timo Kuula. 2018. Simulator sickness in Augmented Reality training using the Microsoft HoloLens. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’18, Vol. 2018-April). Association for Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3173574.3173783Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. J. A. Wagner Filho, C. M.D.S. Freitas, and L. Nedel. 2018. VirtualDesk: A Comfortable and Efficient Immersive Information Visualization Approach. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 415–426. https://doi.org/10.1111/cgf.13430Google ScholarGoogle ScholarCross RefCross Ref
  133. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, and Jing XIAO. 2019. Haptic display for virtual reality: progress and challenges. Virtual Reality & Intelligent Hardware 1, 2 (2019), 136–162. https://doi.org/10.3724/sp.j.2096-5796.2019.0008Google ScholarGoogle ScholarCross RefCross Ref
  134. Peng Wang, Shusheng Zhang, Xiaoliang Bai, Mark Billinghurst, Weiping He, Shuxia Wang, Xiaokun Zhang, Jiaxiang Du, and Yongxing Chen. 2019. Head pointer or eye gaze: Which helps more in MR remote collaboration. In 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings. 1219–1220. https://doi.org/10.1109/VR.2019.8798024Google ScholarGoogle ScholarCross RefCross Ref
  135. Xiyao Wang, Lonni Besançon, David Rousseau, Mickael Sereno, Mehdi Ammi, and Tobias Isenberg. 2020. Towards an Understanding of Augmented Reality Extensions for Existing 3D Data Analysis Tools. In Conference on Human Factors in Computing Systems - Proceedings. 1–13. https://doi.org/10.1145/3313831.3376657Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Colin Ware. 2008. Information Visualization - Perception for Design. Vol. 41. Morgan Kaufmann. CR – Copyright © 2008 Leonardo pages. arxiv:1011.1669v3http://www.jstor.org/stable/20206579Google ScholarGoogle Scholar
  137. Mark Weiser. 1999. The computer for the 21 st century. ACM SIGMOBILE Mobile Computing and Communications Review 3, 3 (jul 1999), 3–11. https://doi.org/10.1145/329124.329126Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Matt Whitlock, Stephen Smart, and Danielle Albers Szafir. 2020. Graphical Perception for Immersive Analytics. In Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020. IEEE, 616–625. https://doi.org/10.1109/VR46266.2020.1582298687237Google ScholarGoogle ScholarCross RefCross Ref
  139. M Whitlock, K Wu, and D A Szafir. 2020. Designing for Mobile and Immersive Visual Analytics in the Field. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 503–513. https://doi.org/10.1109/TVCG.2019.2934282Google ScholarGoogle ScholarCross RefCross Ref
  140. Wesley Willett, Yvonne Jansen, and Pierre Dragicevic. 2017. Embedded Data Representations. IEEE Transactions on Visualization and Computer Graphics 23, 1(2017), 461–470. https://doi.org/10.1109/TVCG.2016.2598608Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Yalong Yang, Maxime Cordeil, Johanna Beyer, Tim Dwyer, Kim Marriott, and Hanspeter Pfister. 2020. Embodied navigation in immersive abstract data visualization: Is overview+detail or zooming better for 3D scatterplots?IEEE Transactions on Visualization and Computer Graphics 26, 2(2020), to appear. https://doi.org/10.1109/tvcg.2020.3030427 arxiv:2008.09941Google ScholarGoogle ScholarCross RefCross Ref
  142. Yalong Yang, Tim Dwyer, Bernhard Jenny, Kim Marriott, Maxime Cordeil, and Haohui Chen. 2019. Origin-Destination Flow Maps in Immersive Environments. IEEE Transactions on Visualization and Computer Graphics 25, 1(2019), 693–703. https://doi.org/10.1109/TVCG.2018.2865192Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Yalong Yang, Tim Dwyer, Kim Marriott, Bernhard Jenny, and Sarah Goodwin. 2020. Tilt map: Interactive transitions between Choropleth map, Prism map and Bar chart in immersive environments. IEEE Transactions on Visualization and Computer Graphics (2020). https://doi.org/10.1109/tvcg.2020.3004137 arxiv:2006.14120Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Yalong Yang, Bernhard Jenny, Tim Dwyer, Kim Marriott, Haohui Chen, and Maxime Cordeil. 2018. Maps and Globes in Virtual Reality. Computer Graphics Forum 37, 3 (2018), 427–438. https://doi.org/10.1111/cgf.13431Google ScholarGoogle ScholarCross RefCross Ref
  145. Dianna Yim, Alec McAllister, Caelum Sloan, Rachel Lee, Steven Vi, Teresa Van, Wesley Willett, and Frank Maurer. 2018. NiwViw: Immersive Analytics Authoring Tool. In ISS 2018 - Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces. 425–428. https://doi.org/10.1145/3279778.3279924Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Clint Zeagler. 2017. Where to wear it: Functional, technical, and social considerations in on-body location for wearable technology 20 years of designing for wearability. In Proceedings - International Symposium on Wearable Computers, ISWC(ISWC ’17, Vol. Part F130534). Association for Computing Machinery, New York, NY, USA, 150–157. https://doi.org/10.1145/3123021.3123042Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Yuhang Zhao, Cynthia L. Bennett, Hrvoje Benko, Edward Cutrell, Christian Holz, Meredith Ringel Morris, and Mike Sinclair. 2018. Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation. In Conference on Human Factors in Computing Systems - Proceedings(CHI ’18, Vol. 2018-April). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3173574.3173690Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Grand Challenges in Immersive Analytics
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
      May 2021
      10862 pages
      ISBN:9781450380966
      DOI:10.1145/3411764

      Copyright © 2021 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 May 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format