skip to main content
10.1145/3411764.3445746acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Reconfiguration Strategies with Composite Data Physicalizations

Published:07 May 2021Publication History

ABSTRACT

Composite data physicalizations allow for the physical reconfiguration of data points, creating new opportunities for interaction and engagement. However, there is a lack of understanding of people’s strategies and behaviors when directly manipulating physical data objects. In this paper, we systematically characterize different reconfiguration strategies using six exemplar physicalizations. We asked 20 participants to reorganize these exemplars with two levels of restriction: changing a single data object versus changing multiple data objects. Our findings show that there were two main reconfiguration strategies used: changes in proximity and changes in atomic orientation. We further characterize these using concrete examples of participant actions in relation to the structure of the physicalizations. We contribute an overview of reconfiguration strategies, which informs the design of future manually reconfigurable and dynamic composite physicalizations.

Skip Supplemental Material Section

Supplemental Material

3411764.3445746_videopreview.mp4

Preview video

mp4

5.9 MB

References

  1. Jason Alexander, Anne Roudaut, Jürgen Steimle, Kasper Hornbæk, Miguel Bruns Alonso, Sean Follmer, and Timothy Merritt. 2018. Grand Challenges in Shape-Changing Interface Research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3173574.3173873Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Laura Armstrong and Lawrence E. Marks. 1999. Haptic perception of linear extent. Perception & Psychophysics 61, 6 (1999), 1211–1226.Google ScholarGoogle ScholarCross RefCross Ref
  3. Fred Attneave and Malcolm D. Arnoult. 1956. The quantitative study of shape and pattern perception.Psychological bulletin 53, 6 (1956), 452.Google ScholarGoogle Scholar
  4. David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1, 2(1979), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Pierre Dragicevic and Yvonne Jansen. 2012. List of Physical Visualizations. www.dataphys.org/list. Last accessed Nov 2020.Google ScholarGoogle Scholar
  6. Madison A. Elliott, Christine Nothelfer, Cindy Xiong, and Danielle Albers Szafir. 2020. A Design Space of Vision Science Methods for Visualization Research. IEEE Transactions on Visualization and Computer Graphics (2020). https://doi.org/10.1109/TVCG.2020.3029413Google ScholarGoogle ScholarCross RefCross Ref
  7. Aluna Everitt, Faisal Taher, and Jason Alexander. 2016. ShapeCanvas: An Exploration of Shape-Changing Content Generation by Members of the Public. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New York, NY, USA, 2778–2782. https://doi.org/10.1145/2858036.2858316Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Danyang Fan, Alexa Fay Siu, Sile O’Modhrain, and Sean Follmer. 2020. Constructive Visualization to Inform the Design and Exploration of Tactile Data Representations. In The 22nd International ACM SIGACCESS Conference on Computers and Accessibility (Virtual Event, Greece) (ASSETS ’20). ACM, New York, NY, USA, Article 60, 4 pages. https://doi.org/10.1145/3373625.3418027Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. InFORM: Dynamic Physical Affordances and Constraints through Shape and Object Actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 417–426. https://doi.org/10.1145/2501988.2502032Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Pauline Gourlet and Thierry Dassé. 2017. Cairn: A Tangible Apparatus for Situated Data Collection, Visualization and Analysis. In Proceedings of the 2017 Conference on Designing Interactive Systems (Edinburgh, United Kingdom) (DIS ’17). ACM, New York, NY, USA, 247–258. https://doi.org/10.1145/3064663.3064794Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 203–212. https://doi.org/10.1145/1753326.1753357Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eva Hornecker and Jacob Buur. 2006. Getting a Grip on Tangible Interaction: A Framework on Physical Space and Social Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Montréal, Québec, Canada) (CHI ’06). ACM, New York, NY, USA, 437–446. https://doi.org/10.1145/1124772.1124838Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Samuel Huron, Sheelagh Carpendale, Alice Thudt, Anthony Tang, and Michael Mauerer. 2014. Constructive Visualization. In Proceedings of the 2014 Conference on Designing Interactive Systems (Vancouver, BC, Canada) (DIS ’14). ACM, New York, NY, USA, 433–442. https://doi.org/10.1145/2598510.2598566Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Samuel Huron, Yvonne Jansen, and Sheelagh Carpendale. 2014. Constructing Visual Representations: Investigating the Use of Tangible Tokens. IEEE Transactions on Visualization and Computer Graphics 20, 12(2014), 2102–2111. https://doi.org/10.1109/TVCG.2014.2346292Google ScholarGoogle ScholarCross RefCross Ref
  15. Yvonne Jansen and Pierre Dragicevic. 2013. An Interaction Model for Visualizations Beyond The Desktop. IEEE Transactions on Visualization and Computer Graphics 19, 12(2013), 2396–2405. https://doi.org/10.1109/TVCG.2013.134Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Yvonne Jansen, Pierre Dragicevic, and Jean-Daniel Fekete. 2013. Evaluating the Efficiency of Physical Visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 2593–2602. https://doi.org/10.1145/2470654.2481359Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Yvonne Jansen, Pierre Dragicevic, Petra Isenberg, Jason Alexander, Abhijit Karnik, Johan Kildal, Sriram Subramanian, and Kasper Hornbæk. 2015. Opportunities and Challenges for Data Physicalization. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 3227–3236. https://doi.org/10.1145/2702123.2702180Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yvonne Jansen and Kasper Hornbæk. 2016. A Psychophysical Investigation of Size as a Physical Variable. IEEE Transactions on Visualization and Computer Graphics 22, 1(2016), 479–488. https://doi.org/10.1109/TVCG.2015.2467951Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rohit Ashok Khot, Jeewon Lee, Larissa Hjorth, and Florian ’Floyd’ Mueller. 2014. SweatAtoms: Understanding Physical Activity through Material Artifacts. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI EA ’14). ACM, New York, NY, USA, 173–174. https://doi.org/10.1145/2559206.2579479Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. David Kirsh. 1995. The Intelligent Use of Space. Artificial Intelligence 73, 1–2 (1995), 31–68. https://doi.org/10.1016/0004-3702(94)00017-UGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kurt Koffka. 2013. Principles of Gestalt Psychology. The International Library of Psychology, Vol. 44. Routledge.Google ScholarGoogle Scholar
  22. Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Dragicevic, and Sean Follmer. 2016. Zooids: Building Blocks for Swarm User Interfaces. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA, 97–109. https://doi.org/10.1145/2984511.2984547Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mathieu Le Goc, Charles Perin, Sean Follmer, Jean-Daniel Fekete, and Pierre Dragicevic. 2018. Dynamic Composite Data Physicalization Using Wheeled Micro-Robots. IEEE Transactions on Visualization and Computer Graphics 25, 1(2018), 737–747. https://doi.org/10.1109/TVCG.2018.2865159Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Daniel Leithinger and Hiroshi Ishii. 2010. Relief: A Scalable Actuated Shape Display. In Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction (Cambridge, Massachusetts, USA) (TEI ’10). ACM, New York, NY, USA, 221–222. https://doi.org/10.1145/1709886.1709928Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Zhicheng Liu and John Stasko. 2010. Mental Models, Visual Reasoning and Interaction in Information Visualization: A Top-down Perspective. IEEE Transactions on Visualization and Computer Graphics 16, 6(2010), 999–1008. https://doi.org/10.1109/TVCG.2010.177Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Deborah Lupton. 2017. Feeling your data: Touch and making sense of personal digital data. New Media & Society 19, 10 (2017), 1599–1614.Google ScholarGoogle ScholarCross RefCross Ref
  27. Tamara Munzner. 2014. Visualization Analysis and Design. CRC Press, Boca Raton FL, United States.Google ScholarGoogle Scholar
  28. Majken K. Rasmussen, Esben W. Pedersen, Marianne G. Petersen, and Kasper Hornbæk. 2012. Shape-Changing Interfaces: A Review of the Design Space and Open Research Questions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). ACM, New York, NY, USA, 735–744. https://doi.org/10.1145/2207676.2207781Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kim Sauvé, Dominic Potts, Jason Alexander, and Steven Houben. 2020. A Change of Perspective: How User Orientation Influences the Perception of Physicalizations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376312Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Stephen Smart and Danielle Albers Szafir. 2019. Measuring the Separability of Shape, Size, and Color in Scatterplots. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300899Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Miriam Sturdee, John Hardy, Nick Dunn, and Jason Alexander. 2015. A Public Ideation of Shape-Changing Applications. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces (Madeira, Portugal) (ITS ’15). ACM, New York, NY, USA, 219–228. https://doi.org/10.1145/2817721.2817734Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Simon Stusak, Aurélien Tabard, Franziska Sauka, Rohit Ashok Khot, and Andreas Butz. 2014. Activity Sculptures: Exploring the Impact of Physical Visualizations on Running Activity. IEEE Transactions on Visualization and Computer Graphics 20, 12(2014), 2201–2210. https://doi.org/10.1109/TVCG.2014.2352953Google ScholarGoogle ScholarCross RefCross Ref
  33. Faisal Taher, John Hardy, Abhijit Karnik, Christian Weichel, Yvonne Jansen, Kasper Hornbæk, and Jason Alexander. 2015. Exploring Interactions with Physically Dynamic Bar Charts. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 3237–3246. https://doi.org/10.1145/2702123.2702604Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Faisal Taher, Yvonne Jansen, Jonathan Woodruff, John Hardy, Kasper Hornbæk, and Jason Alexander. 2017. Investigating the Use of a Dynamic Physical Bar Chart for Data Exploration and Presentation. IEEE Transactions on Visualization and Computer Graphics 23, 1(2017), 451–460. https://doi.org/10.1109/TVCG.2016.2598498Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Alice Thudt, Uta Hinrichs, Samuel Huron, and Sheelagh Carpendale. 2018. Self-Reflection and Personal Physicalization Construction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173728Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Colin Ware. 2019. Information Visualization: Perception for Design. Morgan Kaufmann, Cambridge MA, United States.Google ScholarGoogle Scholar
  37. Tiffany Wun, Jennifer Payne, Samuel Huron, and Sheelagh Carpendale. 2016. Comparing Bar Chart Authoring with Microsoft Excel and Tangible Tiles. Computer Graphics Forum 35, 3 (2016), 111–120. https://doi.org/10.1111/cgf.12887Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Reconfiguration Strategies with Composite Data Physicalizations
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
      May 2021
      10862 pages
      ISBN:9781450380966
      DOI:10.1145/3411764

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 May 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format