skip to main content
10.1145/3131365.3131378acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
research-article

Through the wormhole: tracking invisible MPLS tunnels

Published:01 November 2017Publication History

ABSTRACT

For years, Internet topology research has been conducted through active measurement. For instance, Caida builds router level topologies on top of IP level traces obtained with traceroute. The resulting graphs contain a significant amount of nodes with a very large degree, often exceeding the actual number of interfaces of a router. Although this property may result from inaccurate alias resolution, we believe that opaque MPLS clouds made of invisible tunnels are the main cause. Using Layer-2 technologies such as MPLS, routers can be configured to hide internal IP hops from traceroute. Consequently, an entry point of an MPLS network appears as the neighbor of all exit points and the whole Layer-3 network turns into a dense mesh of high degree nodes.

This paper tackles three problems: the revelation of IP hops hidden by MPLS tunnels, the MPLS deployment underestimation, and the overestimation of high degree nodes. We develop new measurement techniques able to reveal the presence and content of invisible MPLS tunnels. We assess them through emulation and cross-validation and perform a large-scale measurement campaign targeting suspicious networks on which we apply statistical analysis. Finally, based on our dataset, we look at basic graph properties impacted by invisible tunnels.

References

  1. P. Agarwal and B. Akyol. 2003. Time-to-Live (TTL) Processing in Multiprotocol Label Switching (MPLS) Networks. RFC 3443. Internet Engineering Task Force. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Z. Al-Qudah, M. Alsarayreh, I. Jomhawy, and M. Rabinovich. 2016. Internet Path Stability: Exploring the Impact of MPLS Deployment. In Proc. IEEE Global Communication Conference (GLOBECOM).Google ScholarGoogle Scholar
  3. L. Andersson and R. Asati. 2009. Multiprotocol Label Switching (MPLS) Label Stack Entry: EXP Field Renamed to Traffic Class Field. RFC 5462. Internet Engineering Task Force.Google ScholarGoogle Scholar
  4. L. Andersson, I. Minei, and T. Thomas. 2007. LDP Specification. RFC 5036. Internet Engineering Task Force.Google ScholarGoogle Scholar
  5. B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Magnien, and R. Teixeira. 2006. Avoiding Traceroute Anomalies with Paris Traceroute. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Augustin, R. Teixeira, and T. Friedman. 2007. Measuring Load-Balanced Paths in the Internet. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow. 2001. RSVP-TE: Extensions to RSVP for LSP Tunnels. RFC 3209. Internet Engineering Task Force. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Aydin. 2014. CISCO vs. Juniper MPLS. (June 2014). See http://monsterdark.com/cisco-vs-juniper-mpls/.Google ScholarGoogle Scholar
  9. R. Bonica, D. Gan, D. Tappan, and C. Pignataro. 2007. ICMP Extensions for Multiprotocol Label Switching. RFC 4950. Internet Engineering Task Force.Google ScholarGoogle Scholar
  10. Center for Applied Data Analysis. 2016. The CAIDA UCSD Internet Topology Data Kit. (March 2016). See http://www.caida.org/data/internet-topology-data-kit.Google ScholarGoogle Scholar
  11. CISCO. {n.d.}. CISCO ASR9922 Router. see https://goo.gl/KYyfbr.Google ScholarGoogle Scholar
  12. CISCO. {n. d.}. CISCO Line Cards. see https://goo.gl/XqUN3q.Google ScholarGoogle Scholar
  13. Cisco. 2013. MPLS Label Distribution Protocol Configuration Guide, Cisco IOS Release 15S. Cisco, Chapter MPLS LDP Local Label Allocation Filtering. See https://goo.gl/rF975K.Google ScholarGoogle Scholar
  14. Cisco. 2017. Segment Routing Configuration Guide, Cisco IOS XE Release 3S. Cisco Press.Google ScholarGoogle Scholar
  15. kc claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov. 2009. Internet Mapping: from Art to Science. In Proc. IEEE Cybersecurity Applications and Technologies Conference for Homeland Security (CATCH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Clauset and C. Moore. 2004. Traceroute Sampling Makes Random Graphs Appear to Have Power Law Degree Distributions. cond-mat 0312674. arXiv.Google ScholarGoogle Scholar
  17. L. De Ghein. 2006. MPLS Fundamental: A Comprehensive Introduction to MPLS (Theory and Practice). CISCO Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. B. Donnet and T. Friedman. 2007. Internet Topology Discovery: a Survey. IEEE Communications Surveys and Tutorials 9, 4 (December 2007), 2--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. Donnet, M. Luckie, P. Mérindol, and J.-J. Pansiot. 2012. Revealing MPLS Tunnels Obscured from Traceroute. ACM SIGCOMM Computer Communication Review 42, 2 (April 2012), 87--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Erdøs and A. Rényi. 1960. On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17--61.Google ScholarGoogle Scholar
  21. M. Faloutsos, P. Faloutsos, and C. Faloutsos. 1999. On Power-Law Relationships of the Internet Topology. In Proc. ACM SIGCOMM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Flach, E. Katz-Bassett, and R. Govindan. 2012. Quantifying Violations of Destination-Based Forwarding on the Internet. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Fontugne, E. Aben, C. Pelsser, and R. Bush. 2017. Pinpointing Delay and Forwarding Anomalies Using Large-Scale Traceroute Measurements. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Geshev. 2015. Warranty Void if Label Removed: Attacking MPLS Networks. In Proc. Zero Nights. see http://2015.zeronights.org/assets/files/02-Geshev.pdf.Google ScholarGoogle Scholar
  25. J.-L. Guillaume, M. Latapy, and C. Magnien. 2004. Comparison of Failures and Attacks on Random and Scale-Free Networks. In Proc. 8th International Conference on Principles of Distributed Systems (OPODIS). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Haddadi, G. Iannaccone, A. Moore, R. Mortier, and M. Rio. 2008. Network Topologies: Inference, Modeling and Generation. IEEE Communications Surveys and Tutorials 10, 2 (April 2008), 48--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Juniper. 2014. Configuring the Prefixes Advertised into LDP from the Routing Table. (December 2014). See https://goo.gl/jwdr4Q.Google ScholarGoogle Scholar
  28. A. Lakhina, J. Byers, M. Crovella, and P. Xie. 2003. Sampling Biases in IP Topology Measurements. In Proc. IEEE INFOCOM.Google ScholarGoogle Scholar
  29. M. Luckie. 2010. Scamper: a Scalable and Extensible Packet Prober for Active Measurement of the Internet. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Luckie, A. Dhamdhere, B. Huffaker, D. Clark, and k claffy. 2016. bdrmap: Inference of Borders Between IP Networks. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Mérindol, B. Donnet, O. Bonaventure, and J.-J. Pansiot. 2010. On the Impact of Layer-2 on Node Degree Distribution. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. Muthukrishnan and A. Malis. 2000. A Core MPLS IP VPN Architecture. RFC 2917. Internet Engineering Task Force. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Pastor-Satorras and A. Vespignani. 2004. Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and A. Conta. 2001. MPLS Label Stack Encoding. RFC 3032. Internet Engineering Task Force. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. E. Rosen, A. Viswanathan, and R. Callon. 2001. Multiprotocol Label Switching Architecture. RFC 3031. Internet Engineering Task Force. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Sommers, B. Eriksson, and P. Barford. 2011. On the Prevalence and Characteristics of MPLS Deployments in the Open Internet. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Srinivasa, L. P. Bloomberg, A. Viswanathan, and T. Nadeau. 2004. Multiprocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB). RFC 3812. Internet Engineering Task Force.Google ScholarGoogle Scholar
  38. Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet. 2015. MPLS Under the Microscope: Revealing Actual Transit Path Diversity. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet. 2016. A Brief History of MPLS Usage in IPv6. In Proc. Passive and Activement Measurement Conference (PAM).Google ScholarGoogle Scholar
  40. Y. Vanaubel, J.-J. Pansiot, P. Mérindol, and B. Donnet. 2013. Network Fingerprinting: TTL-Based Router Signature. In Proc. ACM Internet Measurement Conference (IMC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Wang, K. Ho, G. Pavlou, and M. Howarth. 2008. An Overview of Routing Optimization for Internet Traffic Engineering. IEEE Communications and Surveys Tutorials 10, 1 (April 2008), 36--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. W. Willinger, D. Alderson, and J. C. Doyle. 2009. Mathematics and the Internet: a Source of Enormous Confusion and Great Potential. Notices of the American Mathematical Society 56, 5 (May 2009), 586--599.Google ScholarGoogle Scholar

Index Terms

  1. Through the wormhole: tracking invisible MPLS tunnels

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        IMC '17: Proceedings of the 2017 Internet Measurement Conference
        November 2017
        509 pages
        ISBN:9781450351188
        DOI:10.1145/3131365

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 November 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate277of1,083submissions,26%

        Upcoming Conference

        IMC '24
        ACM Internet Measurement Conference
        November 4 - 6, 2024
        Madrid , AA , Spain

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader