skip to main content
research-article
Public Access

Computational multicopter design

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

We present an interactive system for computational design, optimization, and fabrication of multicopters. Our computational approach allows non-experts to design, explore, and evaluate a wide range of different multicopters. We provide users with an intuitive interface for assembling a multicopter from a collection of components (e.g., propellers, motors, and carbon fiber rods). Our algorithm interactively optimizes shape and controller parameters of the current design to ensure its proper operation. In addition, we allow incorporating a variety of other metrics (such as payload, battery usage, size, and cost) into the design process and exploring tradeoffs between them. We show the efficacy of our method and system by designing, optimizing, fabricating, and operating multicopters with complex geometries and propeller configurations. We also demonstrate the ability of our optimization algorithm to improve the multicopter performance under different metrics.

Skip Supplemental Material Section

Supplemental Material

References

  1. APM, 2015. APM autopilot suite. http://ardupilot.org.Google ScholarGoogle Scholar
  2. Aström, K. J., and Murray, R. M. 2010. Feedback systems: an introduction for scientists and engineers. Princeton University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33, 4, (July), 96:1--96:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bharaj, G., Coros, S., Thomaszewski, B., Tompkin, J., Bickel, B., and Pfister, H. 2015. Computational design of walking automata. In Proc. Symposium on Computer Animation, 93--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bouabdallah, S., Noth, A., and Siegwart, R. 2004. PID vs LQ control techniques applied to an indoor micro quadrotor. In Intelligent Robots and Systems (IROS) 2004.Google ScholarGoogle Scholar
  6. Boyd, S., and Vandenberghe, L. 2004. Convex optimization. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Coros, S., Karpathy, A., Jones, B., Reveret, L., and Van De Panne, M. 2011. Locomotion skills for simulated quadrupeds. ACM Trans. Graph. 30, 4, (July), 59:1--59:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4, (July), 83:1--83:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., and Wardetzky, M. 2014. Wire mesh design. ACM Trans. Graph. 33, 4, (July), 66:1--66:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grant, M., and Boyd, S. 2008. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control. Springer, 95--110. http://stanford.edu/~boyd/graph_dcp.html.Google ScholarGoogle Scholar
  11. Grant, M., and Boyd, S., 2014. CVX: MATLAB software for disciplined convex programming, version 2.1. http://cvxr.com/cvx.Google ScholarGoogle Scholar
  12. Hoffmann, G., Rajnarayan, D. G., Waslander, S. L., Dostal, D., Jang, J. S., and Tomlin, C. J. 2004. The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In Digital Avionics Systems Conference (DASC) 2004.Google ScholarGoogle Scholar
  13. Hoffmann, G. M., Huang, H., Waslander, S. L., and Tomlin, C. J. 2007. Quadrotor helicopter flight dynamics and control: theory and experiment. In Proc. AIAA Guidance, Navigation, and Control Conference.Google ScholarGoogle Scholar
  14. Jain, S., and Liu, C. K. 2009. Interactive synthesis of human-object interaction. In Proc. Symposium on Computer Animation, 47--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Joubert, N., Roberts, M., Truong, A., Berthouzoz, F., and Hanrahan, P. 2015. An interactive tool for designing quadrotor camera shots. ACM Trans. Graph. 34, 6, (November), 238:1--238:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ju, E., Won, J., Lee, J., Choi, B., Noh, J., and Choi, M. G. 2013. Data-driven control of flapping flight. ACM Trans. Graph. 32, 5, (September), 151:1--151:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph. 33, 6, (November), 217:1--217:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. 30, 4, (July), 85:1--85:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Laub, A. 1979. A Schur method for solving algebraic Riccati equations. IEEE Transactions on Automatic Control 24, 6, 913--921.Google ScholarGoogle ScholarCross RefCross Ref
  20. Leishman, J. G. 2006. Principles of helicopter aerodynamics. Cambridge University Press.Google ScholarGoogle Scholar
  21. Lentine, M., Grétarsson, J. T., Schroeder, C., Robinson-Mosher, A., and Fedkiw, R. 2011. Creature control in a fluid environment. IEEE TVCG 17, 5, 682--693. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Magnussen, Ø., Hovland, G., and Ottestad, M. 2014. Multicopter uav design optimization. In IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1--6.Google ScholarGoogle Scholar
  23. Magnussen, Ø., Ottestad, M., and Hovland, G. 2015. Multicopter design optimization and validation. Modeling, Identification and Control 36, 2,, 67.Google ScholarGoogle ScholarCross RefCross Ref
  24. Martin, T., Umetani, N., and Bickel, B. 2015. OmniAD: data-driven omni-directional aerodynamics. ACM Trans. Graph. 34, 4, (July), 113:1--113:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. MATLAB, 2016. Linear-Quadratic Regulator (LQR) design. http://www.mathworks.com/help/control/ref/lqr.html.Google ScholarGoogle Scholar
  26. Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., and Pollefeys, M. 2012. PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Autonomous Robots 33, 1--2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. 26, 3, (July), 45:1--45:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nocedal, J., and Wright, S. 2006. Numerical optimization. Springer Science & Business Media.Google ScholarGoogle Scholar
  29. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. 32, 4, (July), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Raffo, G. V., Ortega, M. G., and Rubio, F. R. 2010. An integral predictive/nonlinear H8 control structure for a quadrotor helicopter. Automatica 46, 1, 29--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. RCBenchmark, 2016. Dynamometer. https://www.rcbenchmark.com/.Google ScholarGoogle Scholar
  33. Roberts, M., and Hanrahan, P. 2016. Generating dynamically feasible trajectories for quadrotor cameras. ACM Trans. Graph. 35, 4, (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. Sketchchair: an all-in-one chair design system for end users. In Proc. International Conference on Tangible, Embedded, and Embodied Interaction, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. 33, 4, (July), 62:1--62:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. SciPy, 2014. CARE solver. http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.solve_continuous_are.html.Google ScholarGoogle Scholar
  37. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans. Graph. 33, 4, (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Tan, J., Gu, Y., Turk, G., and Liu, C. K. 2011. Articulated swimming creatures. ACM Trans. Graph. 30, 4, (July), 58:1--58:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tan, J., Gu, Y., Liu, C. K., and Turk, G. 2014. Learning bicycle stunts. ACM Trans. Graph. 33, 4, (July), 50:1--50:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tayebi, A., and McGilvray, S. 2004. Attitude stabilization of a four-rotor aerial robot. In Proc. IEEE Conference on Decision and Control. 2, 1216--1221.Google ScholarGoogle ScholarCross RefCross Ref
  41. Tedrake, R., 2014. Underactuated robotics: algorithms for walking, running, swimming, flying, and manipulation (course notes for MIT 6.832). http://underactuated.csail.mit.edu/underactuated.html.Google ScholarGoogle Scholar
  42. Twigg, C. D., and James, D. L. 2008. Backward steps in rigid body simulation. ACM Trans. Graph. 27, 3, (August), 25:1--25:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4, (July), 90:1--90:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4, (July), 86:1--86:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33, 4, (July), 65:1--65:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. 31, 4, (July), 87:1--87:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3, (August), 60:1--60:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Waslander, S. L., Hoffmann, G. M., Jang, J. S., and Tomlin, C. J. 2005. Multi-agent quadrotor testbed control design: integral sliding mode vs reinforcement learning. In Intelligent Robots and Systems (IROS) 2005.Google ScholarGoogle Scholar
  49. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM Trans. Graph. 31, 6, (November), 159:1--159:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wu, J.-c., and Popović, Z. 2003. Realistic modeling of bird flight animations. ACM Trans. Graph. 22, 3, (July), 888--895. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6, (November), 127:1--127:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational multicopter design

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 6
      November 2016
      1045 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2980179
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 December 2016
      Published in tog Volume 35, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader