skip to main content
survey
Open Access

Many-Objective Evolutionary Algorithms: A Survey

Authors Info & Claims
Published:29 September 2015Publication History
Skip Abstract Section

Abstract

Multiobjective evolutionary algorithms (MOEAs) have been widely used in real-world applications. However, most MOEAs based on Pareto-dominance handle many-objective problems (MaOPs) poorly due to a high proportion of incomparable and thus mutually nondominated solutions. Recently, a number of many-objective evolutionary algorithms (MaOEAs) have been proposed to deal with this scalability issue. In this article, a survey of MaOEAs is reported. According to the key ideas used, MaOEAs are categorized into seven classes: relaxed dominance based, diversity-based, aggregation-based, indicator-based, reference set based, preference-based, and dimensionality reduction approaches. Several future research directions in this field are also discussed.

Skip Supplemental Material Section

Supplemental Material

References

  1. S. F. Adra and P. J. Fleming. 2011. Diversity management in evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation 15, 2, 183--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. E. Aguirre, A. Liefooghe, S. Verel, and K. Tanaka. 2013a. A study on population size and selection lapse in many-objective optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, Los Alamitos, CA, 1507--1514.Google ScholarGoogle Scholar
  3. H. E. Aguirre, A. Oyama, and K. Tanaka. 2013b. Adaptive ϵ-sampling and ϵ-hood for evolutionary many-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 322--336.Google ScholarGoogle Scholar
  4. H. E. Aguirre and K. Tanaka. 2004. Insights on properties of multiobjective MNK-landscapes. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC’04), Vol. 1. IEEE, Los Alamitos, CA, 196--203.Google ScholarGoogle Scholar
  5. H. E. Aguirre and K. Tanaka. 2007. Working principles, behavior, and performance of MOEAs on MNK-landscapes. European Journal of Operational Research 181, 3, 1670--1690.Google ScholarGoogle ScholarCross RefCross Ref
  6. H. E. Aguirre and K. Tanaka. 2009a. Many-objective optimization by space partitioning and adaptive ϵ-ranking on MNK-landscapes. In Evolutionary Multi-Criterion Optimization. Springer, 407--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. H. E. Aguirre and K. Tanaka. 2009b. Space partitioning with adaptive ϵ-ranking and substitute distance assignments: A comparative study on many-objective MNK-landscapes. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 547--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. E. Aguirre and K. Tanaka. 2010a. A hybrid scalarization and adaptive ϵ-ranking strategy for many-objective optimization. In Parallel Problem Solving from Nature, PPSN XI. Springer, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. E. Aguirre and K. Tanaka. 2010b. Space partitioning evolutionary many-objective optimization: Performance analysis on MNK-landscapes. Information and Media Technologies 5, 2, 636--649.Google ScholarGoogle Scholar
  10. M. Asafuddoula, T. Ray, and R. Sarker. 2013. A decomposition based evolutionary algorithm for many objective optimization with systematic sampling and adaptive epsilon control. In Evolutionary Multi-Criterion Optimization. Springer, 413--427.Google ScholarGoogle Scholar
  11. A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. 2009. Articulating user preferences in many-objective problems by sampling the weighted hypervolume. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 555--562. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Bader and E. Zitzler. 2011. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19, 1, 45--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Balling and S. Wilson. 2001. The maxi-min fitness function for multi-objective evolutionary computation: Application to city planning. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’01). 1079--1084.Google ScholarGoogle Scholar
  14. L. Batista, F. Campelo, F. Guimaraes, and J. Ramírez. 2011a. A comparison of dominance criteria in many-objective optimization problems. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 2359--2366.Google ScholarGoogle Scholar
  15. L. Batista, F. Campelo, F. Guimarães, and J. Ramírez. 2011b. Pareto cone ϵ-dominance: Improving convergence and diversity in multiobjective evolutionary algorithms. In Evolutionary Multi-Criterion Optimization. Springer, 76--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. L. Becerra, C. A. C. Coello, and G. T. Pulido. 2013. Goal-constraint: Incorporating preferences through an evolutionary ϵ-constraint based method. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, Los Alamitos, CA, 741--747.Google ScholarGoogle Scholar
  17. S. Bechikh. 2013. Incorporating Decision Makers Preference Information in Evolutionary Multi-Objective Optimization. Ph.D. Dissertation. High Institute of Management of Tunis, University of Tunis, Tunisia.Google ScholarGoogle Scholar
  18. P. Bentley and J. Wakefield. 1998. Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In Soft Computing in Engineering Design and Manufacturing. Springer, 231--240.Google ScholarGoogle Scholar
  19. N. Beume and G. Rudolph. 2006. Faster S-metric calculation by considering dominated hypervolume as Klee’s measure problem. In Proceedings of the 2nd IASTED Conference on Computational Intelligence (CI’06). 231--236.Google ScholarGoogle Scholar
  20. P. A. N. Bosman. 2012. On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Transactions on Evolutionary Computation 16, 1, 51--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. A. N. Bosman and D. Thierens. 2003. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 2, 174--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Branke, T. Kaußler, and H. Schmeck. 2001. Guidance in evolutionary multi-objective optimization. Advances in Engineering Software 32, 6, 499--507.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. P. Brans and B. Mareschal. 2005. PROMETHEE methods. In Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, 163--186.Google ScholarGoogle Scholar
  24. K. Bringmann, T. Friedrich, F. Neumann, and M. Wagner. 2011. Approximation-guided evolutionary multi-objective optimization. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence. 1198--1203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Brockhoff, D. K. Saxena, K. Deb, and E. Zitzler. 2008. On handling a large number of objectives a posteriori and during optimization. In Multiobjective Problem Solving from Nature. Springer, 377--403.Google ScholarGoogle Scholar
  26. D. Brockhoff, T. Wagner, and H. Trautmann. 2012. On the properties of the R2 indicator. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation (GECCO’12). ACM, New York, NY, 465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Brockhoff and E. Zitzler. 2006a. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In Parallel Problem Solving from Nature, PPSN IX. Springer, 533--542. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Brockhoff and E. Zitzler. 2006b. Dimensionality reduction in multiobjective optimization with (partial) dominance structure preservation: Generalized minimum objective subset problems. TIK Report 247.Google ScholarGoogle Scholar
  29. D. Brockhoff and E. Zitzler. 2007. Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC’07). IEEE, Los Alamitos, CA, 2086--2093.Google ScholarGoogle Scholar
  30. D. Brockhoff and E. Zitzler. 2009. Objective reduction in evolutionary multiobjective optimization: Theory and applications. Evolutionary Computation 17, 2, 135--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Brockhoff and E. Zitzler. 2010. Automated aggregation and omission of objectives for tackling many-objective problems. In New Developments in Multiple Objective and Goal Programming. Springer, 81--102.Google ScholarGoogle Scholar
  32. G. W. Characklis, B. R. Kirsch, J. Ramsey, K. E. M. Dillard, and C. T. Kelley. 2006. Developing portfolios of water supply transfers. Water Resources Research 42, 5, 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. W. Corne and J. D. Knowles. 2007. Techniques for highly multiobjective optimisation: Some nondominated points are better than others. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 773--780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. W. R. Cotton, R. A. Pielke Sr, R. L. Walko, G. E. Liston, C. J. Tremback, H. Jiang, R. L. McAnelly, J. Y. Harrington, M. E. Nicholls, G. G. Carrio, and J. P. McFadden. 2003. RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics 82, 1--4, 5--29.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Črepinšek, S. H. Liu, and M. Mernik. 2013. Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys 45, 3, 35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. I. Das and J. E. Dennis. 1998. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8, 3, 631--657. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. K. Deb. 2001. Multi-objective optimization. In Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 13--46.Google ScholarGoogle Scholar
  38. K. Deb and S. Chaudhuri. 2005. I-EMO: An interactive evolutionary multi-objective optimization tool. In Pattern Recognition and Machine Intelligence. Springer, 690--695. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. K. Deb, S. Gupta, D. Daum, J. Branke, A. K. Mall, and D. Padmanabhan. 2009. Reliability-based optimization using evolutionary algorithms. IEEE Transactions on Evolutionary Computation 13, 5, 1054--1074. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Deb and H. Jain. 2012a. Handling many-objective problems using an improved NSGA-II procedure. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC’12). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  41. K. Deb and H. Jain. 2012b. An Improved NSGA-II Procedure for Many-Objective Optimization, part II: Handling Constraints and Extending to an Adaptive Approach. KanGAL Report 2012010.Google ScholarGoogle Scholar
  42. K. Deb and H. Jain. 2014. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18, 4, 577--601.Google ScholarGoogle ScholarCross RefCross Ref
  43. K. Deb and A. Kumar. 2007. Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 781--788. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. K. Deb, M. Mohan, and S. Mishra. 2005. Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation 13, 4, 501--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2, 182--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. K. Deb and D. K. Saxena. 2006. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In Proceedings of the World Congress on Computational Intelligence (WCCI’06). 3352--3360.Google ScholarGoogle Scholar
  47. K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri. 2006. Reference point based multi-objective optimization using evolutionary algorithms. International Journal of Computational Intelligence Research 2, 3, 273--286.Google ScholarGoogle ScholarCross RefCross Ref
  48. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2002. Scalable multi-objective optimization test problems. In Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC’02). IEEE, Los Alamitos, CA, 825--830.Google ScholarGoogle Scholar
  49. R. Denysiuk, L. Costa, and I. Espírito Santo. 2013. Many-objective optimization using differential evolution with variable-wise mutation restriction. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO’13). ACM, New York, NY, 591--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. K. W. DeRonne and G. Karypis. 2013. Pareto optimal pairwise sequence alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10, 2, 481--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. N. Drechsler, R. Drechsler, and B. Becker. 2001. Multi-objective optimisation based on relation favour. In Evolutionary Multi-Criterion Optimization. Springer, 154--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Emmerich, N. Beume, and B. Naujoks. 2005. An EMO algorithm using the hypervolume measure as selection criterion. In Evolutionary Multi-Criterion Optimization. Springer, 62--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. S. Eppe, M. López-Ibáñez, T. Stutzle, and Y. D. Smet. 2011. An experimental study of preference model integration into multi-objective optimization heuristics. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 2751--2758.Google ScholarGoogle Scholar
  54. G. W. Evans. 1984. An overview of techniques for solving multiobjective mathematical programs. Management Science 30, 11, 1268--1282.Google ScholarGoogle ScholarCross RefCross Ref
  55. M. Farina and P. Amato. 2002. On the optimal solution definition for many-criteria optimization problems. In Proceedings of the 2002 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS’02). IEEE, Los Alamitos, CA, 233--238.Google ScholarGoogle Scholar
  56. J. Figueira, S. Greco, and M. Ehrgott. 2005. Multiple Criteria Decision Analysis: State of the Art Surveys. Vol. 78. Springer, New York, NY.Google ScholarGoogle Scholar
  57. P. J. Fleming, R. C. Purshouse, and R. J. Lygoe. 2005. Many-objective optimization: An engineering design perspective. In Evolutionary Multi-Criterion Optimization. Springer, 14--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. C. M. Fonseca and P. J. Fleming. 1998. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28, 1, 26--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. G. Fu, Z. Kapelan, J. R. Kasprzyk, and P. M. Reed. 2012. Optimal design of water distribution systems using many-objective visual analytics. Journal of Water Resources Planning and Management 139, 6, 624--633.Google ScholarGoogle ScholarCross RefCross Ref
  60. M. Garza-Fabre, G. T. Pulido, and C. A. C. Coello. 2009. Ranking methods for many-objective optimization. In MICAI 2009: Advances in Artificial Intelligence. Springer, 633--645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Garza-Fabre, G. T. Pulido, and C. A. C. Coello. 2010a. Alternative fitness assignment methods for many-objective optimization problems. In Artificial Evolution. Springer, 146--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. M. Garza-Fabre, G. T. Pulido, and C. A. C. Coello. 2010b. Two novel approaches for many-objective optimization. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC’10). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  63. M. Garza-Fabre, G. T. Pulido, C. A. C. Coello, and E. Rodriguez-Tello. 2011. Effective ranking + speciation = many-objective optimization. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 2115--2122.Google ScholarGoogle Scholar
  64. I. Giagkiozis, R. C. Purshouse, and P. J. Fleming. 2013. Generalized decomposition. In Evolutionary Multi-Criterion Optimization. Springer, 428--442.Google ScholarGoogle Scholar
  65. R. H. Gómez and C. A. C. Coello. 2013. MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, Los Alamitos, CA, 2488--2495.Google ScholarGoogle ScholarCross RefCross Ref
  66. D. Gong, J. Sun, and X. Ji. 2013a. Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems. Information Sciences 233, 141--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. D. Gong, G. Wang, and X. Sun. 2013b. Set-based genetic algorithms for solving many-objective optimization problems. In Proceedings of the 2013 13th UK Workshop on Computational Intelligence (UKCI’13). IEEE, Los Alamitos, CA, 96--103.Google ScholarGoogle Scholar
  68. F. Güneş and F. Tokan. 2010. Pattern search optimization with applications on synthesis of linear antenna arrays. Expert Systems with Applications 37, 6, 4698--4705. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. X. Guo, X. Wang, M. Wang, and Y. Wang. 2012. A new objective reduction algorithm for many-objective problems: Employing mutual information and clustering algorithm. In Proceedings of the 2012 8th International Conference on Computational Intelligence and Security (CIS’12). IEEE, Los Alamitos, CA, 11--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. X. Guo, Y. Wang, and X. Wang. 2013. Using objective clustering for solving many-objective optimization problems. Mathematical Problems in Engineering 2013, Article No. 584909.Google ScholarGoogle Scholar
  71. D. Hadka and P. M. Reed. 2012. Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evolutionary Computation 20, 3, 423--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. D. Hadka, P. M. Reed, and T. W. Simpson. 2012. Diagnostic assessment of the Borg MOEA for many-objective product family design problems. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC’12). IEEE, Los Alamitos, CA, 1--10.Google ScholarGoogle Scholar
  73. N. Hamada, Y. Nagata, S. Kobayashi, and I. Ono. 2011a. Adaptive weighted aggregation 2: More scalable AWA for multiobjective function optimization. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 2375--2382.Google ScholarGoogle Scholar
  74. N. Hamada, Y. Nagata, S. Kobayashi, and I. Ono. 2011b. On scalability of adaptive weighted aggregation for multiobjective function optimization. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 669--678.Google ScholarGoogle Scholar
  75. M. P. Hansen and A. Jaszkiewicz. 1998. Evaluating the Quality of Approximations to the Non-Dominated Set. IMM, Department of Mathematical Modelling, Technical University of Denmark.Google ScholarGoogle Scholar
  76. J. G. Herrero, A. Berlanga, and J. M. M. López. 2009. Effective evolutionary algorithms for many-specifications attainment: Application to air traffic control tracking filters. IEEE Transactions on Evolutionary Computation 13, 1, 151--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. H. Hirano and T. Yoshikawa. 2012. A study on two-step search using global-best in PSO for multi-objective optimization problems. In Proceedings of the 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and the 13th International Symposium on Advanced Intelligent Systems (ISIS). IEEE, Los Alamitos, CA, 1894--1897.Google ScholarGoogle Scholar
  78. S. Huband, P. Hingston, L. Barone, and L. While. 2006. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10, 5, 477--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. E. J. Hughes. 2003. Multiple single objective Pareto sampling. In Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC’13), Vol. 4. IEEE, Los Alamitos, CA, 2678--2684.Google ScholarGoogle ScholarCross RefCross Ref
  80. E. J. Hughes. 2007a. MSOPS-II: A general-purpose many-objective optimiser. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC’07). 3944--3951.Google ScholarGoogle ScholarCross RefCross Ref
  81. E. J. Hughes. 2007b. Radar waveform optimisation as a many-objective application benchmark. In Evolutionary Multi-Criterion Optimization. Springer, 700--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. E. J. Hughes. 2008. Fitness assignment methods for many-objective problems. In Multiobjective Problem Solving from Nature. Springer, 307--329.Google ScholarGoogle Scholar
  83. E. J. Hughes. 2011. Many-objective directed evolutionary line search. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 761--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. K. Ikeda, H. Kita, and S. Kobayashi. 2001. Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal? In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2. 957--962.Google ScholarGoogle Scholar
  85. H. Ishibuchi, N. Akedo, and Y. Nojima. 2011. A many-objective test problem for visually examining diversity maintenance behavior in a decision space. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11). 649--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. H. Ishibuchi, N. Akedo, and Y. Nojima. 2013. Relation between neighborhood size and MOEA/D performance on many-objective problems. In Evolutionary Multi-Criterion Optimization. Springer, 459--474.Google ScholarGoogle Scholar
  87. H. Ishibuchi, N. Akedo, and Y. Nojima. 2015. Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation 19, 2, 264--283.Google ScholarGoogle ScholarCross RefCross Ref
  88. H. Ishibuchi, N. Akedo, H. Ohyanagi, and Y. Nojima. 2011. Behavior of EMO algorithms on many-objective optimization problems with correlated objectives. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 1465--1472.Google ScholarGoogle Scholar
  89. H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima. 2010. Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In Parallel Problem Solving from Nature, PPSN XI. Springer, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. H. Ishibuchi, N. Tsukamoto, and Y. Nojima. 2008. Evolutionary many-objective optimization: A short review. In Proceedings of the IEEE World Congress on Evolutionary Computation (CEC’08). IEEE, Los Alamitos, CA, 2419--2426.Google ScholarGoogle Scholar
  91. A. L. Jaimes and C. A. C. Coello. 2009. Study of preference relations in many-objective optimization. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 611--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. A. L. Jaimes, C. A. C. Coello, H. E. Aguirre, and K. Tanaka. 2011a. Adaptive objective space partitioning using conflict information for many-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 151--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. A. L. Jaimes, C. A. C. Coello, and J. E. U. Barrientos. 2009. Online objective reduction to deal with many-objective problems. In Evolutionary Multi-Criterion Optimization. Springer, 423--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. A. L. Jaimes, C. A. C. Coello, and D. Chakraborty. 2008. Objective reduction using a feature selection technique. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 673--680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. A. L. Jaimes, C. A. C. Coello, A. Oyama, and K. Fujii. 2013. An alternative preference relation to deal with many-objective optimization problems. In Evolutionary Multi-Criterion Optimization. Springer, 291--306.Google ScholarGoogle Scholar
  96. A. L. Jaimes, A. A. Montano, and C. A. C. Coello. 2011b. Preference incorporation to solve many-objective airfoil design problems. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 1605--1612.Google ScholarGoogle ScholarCross RefCross Ref
  97. H. Jain and K. Deb. 2013. An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 307--321.Google ScholarGoogle Scholar
  98. H. Jain and K. Deb. 2014. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation 18, 4, 602--622.Google ScholarGoogle ScholarCross RefCross Ref
  99. A. Jaszkiewicz. 2002. On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-A comparative experiment. IEEE Transactions on Evolutionary Computation 6, 4, 402--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Yaochu Jin and B. Sendhoff. 2003. Connectedness, regularity and the success of local search in evolutionary multi-objective optimization. In Proceedings of the 2003 Congress on Evolutionary Computation (CEC’03). Vol. 3. 1910--1917. DOI:http://dx.doi.org/10.1109/CEC.2003.1299907Google ScholarGoogle Scholar
  101. D. S. Johnson, L. McGeogh, F. Glover, and C. Rego. 2000. 8th DIMACS Implementation Challenge: The Traveling Salesman Problem. Retrieved July 27, 2015, from http://dimacs.rutgers.edu/Challenges/TSP/.Google ScholarGoogle Scholar
  102. S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said. 2013. Preference-based many-objective evolutionary testing generates harder test cases for autonomous Agents. In Search Based Software Engineering. Springer, 245--250.Google ScholarGoogle Scholar
  103. J. R. Kasprzyk, P. M. Reed, G. W. Characklis, and B. R. Kirsch. 2012. Many-objective de Novo water supply portfolio planning under deep uncertainty. Environmental Modelling and Software 34, 87--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. L. Kaufman and P. Rousseeuw. 2009. Finding Groups in Data: An Introduction to Cluster Analysis. Vol. 344. John Wiley and Sons.Google ScholarGoogle Scholar
  105. J. H. Kim, J. H. Han, Y. H. Kim, S. H. Choi, and E. S. Kim. 2012. Preference-based solution selection algorithm for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 16, 1, 20--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. J. D. Knowles and D. W. Corne. 2003a. Instance generators and test suites for the multiobjective quadratic assignment problem. In Evolutionary Multi-Criterion Optimization. Springer, 295--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. J. D. Knowles and D. W. Corne. 2003b. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation 7, 2, 100--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. J. D. Knowles and D. W. Corne. 2007. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 757--771. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. J. B. Kollat and P. M. Reed. 2006. Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Advances in Water Resources 29, 6, 792--807.Google ScholarGoogle ScholarCross RefCross Ref
  110. M. Köppen, R. Vicente-Garcia, and B. Nickolay. 2005. Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 399--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. M. Köppen and K. Yoshida. 2007. Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In Evolutionary Multi-Criterion Optimization. Springer, 727--741. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. A. Kostin, G. Guillén-Gosálbez, F. D. Mele, and L. Jiménez. 2012. Identifying key life cycle assessment metrics in the multiobjective design of bioethanol supply chains using a rigorous mixed-integer linear programming approach. Industrial and Engineering Chemistry Research 51, 14, 5282--5291.Google ScholarGoogle ScholarCross RefCross Ref
  113. N. Kowatari, A. Oyama, H. E. Aguirre, and K. Tanaka. 2012. Analysis on population size and neighborhood recombination on many-objective optimization. In Parallel Problem Solving from Nature, PPSN XII. Springer, 22--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. R. Kudikala, A. R. Mills, P. J. Fleming, G. F. Tanner, and J. E. Holt. 2013. Aero engine health management system architecture design using multi-criteria optimization. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’13 Companion). ACM, New York, NY, 185--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. S. Kukkonen and J. Lampinen. 2007. Ranking-dominance and many-objective optimization. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC’07). IEEE, Los Alamitos, CA, 3983--3990.Google ScholarGoogle Scholar
  116. N. Kusuno, H. E. Aguirre, K. Tanaka, and M. Koishi. 2013. Evolutionary multi-objective optimization to attain practically desirable solutions. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 639--646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. 2002. Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10, 3, 263--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. M. Laumanns and R. Zenklusen. 2011. Stochastic convergence of random search methods to fixed size Pareto front approximations. European Journal of Operational Research 213, 2, 414--421.Google ScholarGoogle ScholarCross RefCross Ref
  119. K. Le, D. L. Silva, and H. Li. 2009. An improved version of volume dominance for multi-objective optimisation. In Evolutionary Multi-Criterion Optimization. Springer, 231--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. K. B. Lee and J. H. Kim. 2011. Multi-objective particle swarm optimization with preference-based sorting. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’11). IEEE, Los Alamitos, CA, 2506--2513.Google ScholarGoogle Scholar
  121. M. Li, S. Yang, and X. Liu. 2013. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation PP, 99, 1.Google ScholarGoogle Scholar
  122. M. Li, S. Yang, and X. Liu. 2014. Diversity comparison of Pareto front approximations in many-objective optimization. IEEE Transactions on Cybernetics 44, 12, 2568--2584. DOI:http://dx.doi.org/10.1109/TCYB.2014.2310651Google ScholarGoogle ScholarCross RefCross Ref
  123. M. Li, J. Zheng, K. Li, Q. Yuan, and R. Shen. 2010. Enhancing diversity for average ranking method in evolutionary many-objective optimization. In Parallel Problem Solving from Nature, PPSN XI. Springer, 647--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Z. Li and H. Liu. 2012. Preference-based evolutionary multi-objective optimization. In Proceedings of the 2012 8th International Conference on Computational Intelligence and Security (CIS’12). IEEE, Los Alamitos, CA, 71--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. P. Lindroth, M. Patriksson, and A. B. Strömberg. 2010. Approximating the Pareto optimal set using a reduced set of objective functions. European Journal of Operational Research 207, 3, 1519--1534.Google ScholarGoogle ScholarCross RefCross Ref
  126. E. Løken. 2007. Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews 11, 7, 1584--1595.Google ScholarGoogle ScholarCross RefCross Ref
  127. R. J. Lygoe, M. Cary, and P. J. Fleming. 2013. A real-world application of a many-objective optimisation complexity reduction process. In Evolutionary Multi-Criterion Optimization. Springer, 641--655.Google ScholarGoogle Scholar
  128. A. D. Manriquez, G. T. Pulido, C. A. C. Coello, and R. L. Becerra. 2013. A ranking method based on the R2 indicator for many-objective optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, Los Alamitos, CA, 1523--1530.Google ScholarGoogle Scholar
  129. A. M. Mendez and C. A. C. Coello. 2012. Solving multi-objective optimization problems using differential evolution and a maximin selection criterion. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC’12). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  130. A. M. Mendez and C. A. C. Coello. 2013. Selection operators based on maximin fitness function for multi-objective evolutionary algorithms. In Evolutionary Multi-Criterion Optimization. Springer, 215--229.Google ScholarGoogle Scholar
  131. K. Miettinen. 1999. Nonlinear Multiobjective Optimization. Vol. 12. Springer.Google ScholarGoogle Scholar
  132. K. Miettinen. 2003. Graphical illustration of Pareto optimal solutions. In Multi-Objective Programming and Goal Programming. Advances in Soft Computing, Vol. 21. Springer, 197--202.Google ScholarGoogle Scholar
  133. L. L. Minku and X. Yao. 2013. Software effort estimation as a multiobjective learning problem. ACM Transactions on Software Engineering and Methodology 22, 4, 35:1--35:32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. P. Mitra, C. A. Murthy, and S. K. Pal. 2002. Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 3, 301--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. H. J. F. Moen, N. B. Hansen, H. Hovland, and J. Tørresen. 2013. Many-objective optimization using taxi-cab surface evolutionary algorithm. In Evolutionary Multi-Criterion Optimization. Springer, 128--142.Google ScholarGoogle Scholar
  136. A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. 2014a. A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Transactions on Evolutionary Computation 18, 1, 4--19.Google ScholarGoogle ScholarCross RefCross Ref
  137. A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. 2014b. Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Transactions on Evolutionary Computation 18, 1, 20--35.Google ScholarGoogle ScholarCross RefCross Ref
  138. K. Musselman and J. Talavage. 1980. A tradeoff cut approach to multiple objective optimization. Operations Research 28, 6, 1424--1435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. K. Narukawa. 2013. Effect of dominance balance in many-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 276--290.Google ScholarGoogle Scholar
  140. K. Narukawa and T. Rodemann. 2012. Examining the performance of evolutionary many-objective optimization algorithms on a real-world application. In Proceedings of the 2012 6th International Conference on Genetic and Evolutionary Computing (ICGEC’12). IEEE, Los Alamitos, CA, 316--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. P. R. Palmer, A. M. Cristóbal, and G. T. Parks. 2011. Coherent design methodology using modelling, simulation and optimisation. In Proceedings of the 2011 Grand Challenges on Modeling and Simulation Conference. 65--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. J. Pasia, H. E. Aguirre, and K. Tanaka. 2011. Improved random one-bit climbers with adaptive ϵ-ranking and tabu moves for many-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 182--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. K. Praditwong, M. Harman, and X. Yao. 2011. Software module clustering as a multi-objective search problem. IEEE Transactions on Software Engineering 37, 2, 264--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. K. Praditwong and X. Yao. 2006. A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In Proceedings of the 2006 International Conference on Computational Intelligence and Security. Vol. 1. IEEE, Los Alamitos, CA, 286--291.Google ScholarGoogle Scholar
  145. R. C. Purshouse, K. Deb, M. M. Mansor, S. Mostaghim, and R. Wang. 2014. A review of hybrid evolutionary multiple criteria decision making methods. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC’14). 1147--1154.Google ScholarGoogle Scholar
  146. R. C. Purshouse and P. J. Fleming. 2007. On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation 11, 6, 770--784. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. R. C. Purshouse, C. Jalbă, and P. J. Fleming. 2011. Preference-driven co-evolutionary algorithms show promise for many-objective optimisation. In Evolutionary Multi-Criterion Optimization. Springer, 136--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. F. Qiu, Y. Wu, L. Wang, and B. Jiang. 2012. Bipolar preferences dominance based evolutionary algorithm for many-objective optimization. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC’12). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  149. L. Rachmawati and D. Srinivasan. 2006. Preference incorporation in multi-objective evolutionary algorithms: A survey. In Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC’06). IEEE, Los Alamitos, CA, 962--968.Google ScholarGoogle Scholar
  150. T. Ray, M. Asafuddoula, and A. Isaacs. 2013. A steady state decomposition based quantum genetic algorithm for many objective optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, Los Alamitos, CA, 2817--2824.Google ScholarGoogle Scholar
  151. T. Ray, K. Tai, and K. C. Seow. 2001. Multiobjective design optimization by an evolutionary algorithm. Engineering Optimization 33, 3, 399--424.Google ScholarGoogle ScholarCross RefCross Ref
  152. P. M. Reed and J. B. Kollat. 2012. Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty. Advances in Water Resources 35, 55--68.Google ScholarGoogle ScholarCross RefCross Ref
  153. P. M. Reed and J. B. Kollat. 2013. Visual analytics clarify the scalability and effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example. Advances in Water Resources 56, 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  154. C. Reeves. 1995. A genetic algorithm for flowshop sequencing. Computers and Operations Research 22, 1, 5--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. S. J. Ryu, K. B. Lee, and J. H. Kim. 2012. Improved version of a multiobjective quantum-inspired evolutionary algorithm with preference-based selection. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC’12). IEEE, Los Alamitos, CA, 1--7.Google ScholarGoogle Scholar
  156. A. Santiago, H. J. F. Huacuja, B. Dorronsoro, J. E. Pecero, C. G. Santillan, J. J. G. Barbosa, and J. C. S. Monterrubio. 2014. A survey of decomposition methods for multi-objective optimization. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Springer, 453--465.Google ScholarGoogle Scholar
  157. H. Sato, H. E. Aguirre, and K. Tanaka. 2007. Controlling dominance area of solutions and its impact on the performance of MOEAs. In Evolutionary Multi-Criterion Optimization. Springer, 5--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. H. Sato, H. E. Aguirre, and K. Tanaka. 2010a. Pareto partial dominance MOEA and hybrid archiving strategy included CDAS in many-objective optimization. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC’10). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  159. H. Sato, H. E. Aguirre, and K. Tanaka. 2010b. Self-controlling dominance area of solutions in evolutionary many-objective optimization. In Simulated Evolution and Learning. Springer, 455--465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. H. Sato, H. E. Aguirre, and K. Tanaka. 2011a. Genetic diversity and effective crossover in evolutionary many-objective optimization. In Learning and Intelligent Optimization. Springer, 91--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. H. Sato, H. E. Aguirre, and K. Tanaka. 2011b. Improved S-CDAs using crossover controlling the number of crossed genes for many-objective optimization. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 753--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. H. Sato, C. A. C. Coello, H. E. Aguirre, and K. Tanaka. 2012. Adaptive control of the number of crossed genes in many-objective evolutionary optimization. In Learning and Intelligent Optimization. Springer, 478--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. D. K. Saxena and K. Deb. 2007. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding. In Evolutionary Multi-Criterion Optimization. Springer, 772--787. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang. 2013. Objective reduction in many-objective optimization: Linear and nonlinear algorithms. IEEE Transactions on Evolutionary Computation 17, 1, 77--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. D. K. Saxena, Q. Zhang, J. A. Duro, and A. Tiwari. 2011. Framework for many-objective test problems with both simple and complicated Pareto-set shapes. In Evolutionary Multi-Criterion Optimization. Springer, 197--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. A. S. Sayyad, T. Menzies, and H. Ammar. 2013. On the value of user preferences in search-based software engineering: A case study in software product lines. In Proceedings of the 2013 International Conference on Software Engineering. IEEE, Los Alamitos, CA, 492--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. O. Schütze, X. Esquivel, A. Lara, and C. A. C. Coello. 2010. Measuring the Averaged Hausdorff Distance to the Pareto Front of a Multi-Objective Optimization Problem. Technical Report TR-OS-2010-02. CINVESTAV.Google ScholarGoogle Scholar
  168. T. W. Simpson, W. Chen, J. K. Allen, and F. Mistree. 1996. Conceptual design of a family of products through the use of the robust concept exploration method. In Proceedings of the 6th AIAA/NASA/USAF MultiDisciplinary Analysis and Optimization Symposium. 1535--1545.Google ScholarGoogle Scholar
  169. H. K. Singh, A. Isaacs, and T. Ray. 2011. A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Transactions on Evolutionary Computation 15, 4, 539--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. A. Sinha, D. K. Saxena, K. Deb, and A. Tiwari. 2013. Using objective reduction and interactive procedure to handle many-objective optimization problems. Applied Soft Computing 13, 1, 415--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. D. W. Stouch, E. Zeidman, M. Richards, K. D. McGraw, and W. Callahan. 2011. Coevolving collection plans for UAS constellations. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 1691--1698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. A. Sülflow, N. Drechsler, and R. Drechsler. 2007. Robust multi-objective optimization in high dimensional spaces. In Evolutionary Multi-Criterion Optimization. Springer, 715--726. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. K. Tagawa and A. Imamura. 2013. Many-hard-objective optimization using differential evolution based on two-stage constraint-handling. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 671--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. R. Takahashi, E. Carrano, and E. Wanner. 2011. On a stochastic differential equation approach for multiobjective optimization up to Pareto-criticality. In Evolutionary Multi-Criterion Optimization. Springer, 61--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Y. Tan, Y. Jiao, H. Li, and X. Wang. 2013. MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives. Computers and Operations Research 40, 6, 1648--1660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. J. Tang, S. Alam, C. Lokan, and H. Abbass. 2012. A multi-objective evolutionary method for dynamic airspace re-sectorization using sectors clipping and similarities. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC’12). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  177. J. Tate, B. Woolford-Lim, I. Bate, and X. Yao. 2012. Evolutionary and principled search strategies for sensornet protocol optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42, 1, 163--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. L. Thiele, K. Miettinen, P. Korhonen, and J. Molina. 2009. A preference-based evolutionary algorithm for multi-objective optimization. Evolutionary Computation 17, 3, 411--436. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. R. Ursem. 2010. Centrifugal Pump Design: Three Benchmark Problems for Many-Objective Optimization. Technical Report 2010-01. Grundfos A/S.Google ScholarGoogle Scholar
  180. L. J. P. Van der Maaten, E. O. Postma, and H. J. Van Den Herik. 2009. Dimensionality reduction: A comparative review. Journal of Machine Learning Research 10, 1--41.Google ScholarGoogle Scholar
  181. D. A. Van Veldhuizen and G. B. Lamont. 1998. Evolutionary computation and convergence to a Pareto front. In Proceedings of the Genetic Programming Conference. 221--228.Google ScholarGoogle Scholar
  182. M. Velasquez and P. T. Hester. 2013. An analysis of multi-criteria decision making methods. International Journal of Operations Research 10, 56--66.Google ScholarGoogle Scholar
  183. N. Venkatarayalu and T. Ray. 2004. Optimum design of Yagi-Uda antennas using computational intelligence. IEEE Transactions on Antennas and Propagation 52, 7, 1811--1818.Google ScholarGoogle ScholarCross RefCross Ref
  184. S. Verel, A. Liefooghe, and C. Dhaenens. 2011. Set-based multiobjective fitness landscapes: A preliminary study. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. 769--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. C. A. R. Villalobos and C. A. C. Coello. 2012. A new multi-objective evolutionary algorithm based on a performance assessment indicator. In Proceedings of the 14th International Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 505--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. C. Von Lücken, B. Barán, and C. Brizuela. 2014. A survey on multi-objective evolutionary algorithms for many-objective problems. Computational Optimization and Applications 1, 1--50.Google ScholarGoogle Scholar
  187. M. Wagner and F. Neumann. 2013. A fast approximation guided evolutionary multi-objective algorithm. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO’13). ACM, New York, NY, 687--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. T. Wagner, N. Beume, and B. Naujoks. 2007. Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 742--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. D. J. Walker, R. M. Everson, and J. E. Fieldsend. 2013. Visualizing mutually nondominating solution sets in many-objective optimization. IEEE Transactions on Evolutionary Computation 17, 2, 165--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. H. Wang, L. Jiao, and X. Yao. 2014. An improved two-archive algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation PP, 99, 1. DOI:http://dx.doi.org/10.1109/TEVC.2014.2350987Google ScholarGoogle Scholar
  191. H. Wang and X. Yao. 2014. Corner sort for Pareto-based many-objective optimization. IEEE Transactions on Cybernetics 44, 1, 92--102.Google ScholarGoogle ScholarCross RefCross Ref
  192. R. Wang, R. C. Purshouse, and P. J. Fleming. 2012. Local preference-inspired co-evolutionary algorithms. In Proceedings of the 14th International Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 513--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. R. Wang, R. C. Purshouse, and P. J. Fleming. 2013a. On finding well-spread Pareto optimal solutions by preference-inspired co-evolutionary algorithm. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 695--702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. R. Wang, R. C. Purshouse, and P. J. Fleming. 2013b. Preference-inspired co-evolutionary algorithm using weights for many-objective optimization. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation. ACM, New York, NY, 101--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. R. Wang, R. C. Purshouse, and P. J. Fleming. 2013c. Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Transactions on Evolutionary Computation 17, 4, 474--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. R. Wang, T. Zhang, and B. Guo. 2013. An enhanced MOEA/D using uniform directions and a pre-organization procedure. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). IEEE, Los Alamitos, CA, 2390--2397.Google ScholarGoogle Scholar
  197. Z. Wang, K. Tang, and X. Yao. 2010. Multi-objective approaches to optimal testing resource allocation in modular software systems. IEEE Transactiona on Reliability 59, 3, 563--575.Google ScholarGoogle ScholarCross RefCross Ref
  198. L. While, L. Bradstreet, and L. Barone. 2012. A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation 16, 1, 86--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. L. While, P. Hingston, L. Barone, and S. Huband. 2006. A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation 10, 1, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. U. Wickramasinghe, R. Carrese, and X. Li. 2010. Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization algorithm. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC’10). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  201. S. Yang, M. Li, X. Liu, and J. Zheng. 2013. A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation 17, 5, 721--736. Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. P. L. Yu. 1974. Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. Journal of Optimization Theory and Applications 14, 3, 319--377.Google ScholarGoogle ScholarCross RefCross Ref
  203. Q. Zhang and H. Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11, 6, 712--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. Q. Zhang, W. Liu, and H. Li. 2009. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09). IEEE, Los Alamitos, CA, 203--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari. 2008. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition. Technical Report. University of Essex, Colchester, UK.Google ScholarGoogle Scholar
  206. A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. 2006. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC’06). IEEE, Los Alamitos, CA, 892--899.Google ScholarGoogle Scholar
  207. A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, and Q. Zhang. 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1, 1, 32--49.Google ScholarGoogle ScholarCross RefCross Ref
  208. E. Zitzler and S. Künzli. 2004. Indicator-based selection in multiobjective search. In Parallel Problem Solving from Nature, PPSN VIII. Springer, 832--842.Google ScholarGoogle Scholar
  209. E. Zitzler, M. Laumanns, and L. Thiele. 2001. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103. Eidgenössische Technische Hochschule Zürich (ETH).Google ScholarGoogle Scholar
  210. E. Zitzler and L. Thiele. 1998. Multiobjective optimization using evolutionary algorithms: A comparative case study. In Parallel Problem Solving from Nature, PPSN V. Springer, 292--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 4, 257--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G Da Fonseca. 2003. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7, 2, 117--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. X. Zou, Y. Chen, M. Liu, and L. Kang. 2008. A new evolutionary algorithm for solving many-objective optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38, 5, 1402--1412. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Many-Objective Evolutionary Algorithms: A Survey

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 48, Issue 1
        September 2015
        592 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/2808687
        • Editor:
        • Sartaj Sahni
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 September 2015
        • Accepted: 1 June 2015
        • Revised: 1 April 2015
        • Received: 1 April 2014
        Published in csur Volume 48, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • survey
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader