skip to main content
research-article

Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond

Published:26 December 2012Publication History
Skip Abstract Section

Abstract

We show that for every fixed ji ≥ 1, the k-Dominating Set problem restricted to graphs that do not have Kij (the complete bipartite graph on (i + j) vertices, where the two parts have i and j vertices, respectively) as a subgraph is fixed parameter tractable (FPT) and has a polynomial kernel. We describe a polynomial-time algorithm that, given a Ki,j-free graph G and a nonnegative integer k, constructs a graph H (the “kernel”) and an integer k' such that (1) G has a dominating set of size at most k if and only if H has a dominating set of size at most k', (2) H has O((j + 1)i + 1 ki2) vertices, and (3) k' = O((j + 1)i + 1 ki2).

Since d-degenerate graphs do not have Kd+1,d+1 as a subgraph, this immediately yields a polynomial kernel on O((d + 2)d+2 k(d + 1)2) vertices for the k-Dominating Set problem on d-degenerate graphs, solving an open problem posed by Alon and Gutner [Alon and Gutner 2008; Gutner 2009].

The most general class of graphs for which a polynomial kernel was previously known for k-Dominating Set is the class of Kh-topological-minor-free graphs [Gutner 2009]. Graphs of bounded degeneracy are the most general class of graphs for which an FPT algorithm was previously known for this problem. Kh-topological-minor-free graphs are Ki,j-free for suitable values of i,j (but not vice-versa), and so our results show that k-Dominating Set has both FPT algorithms and polynomial kernels in strictly more general classes of graphs.

Using the same techniques, we also obtain an O(jki) vertex-kernel for the k-Independent Dominating Set problem on Ki,j-free graphs.

References

  1. Alber, J., Fellows, M. R., and Niedermeier, R. 2004. Polynomial-time data reduction for dominating set. J. ACM 51, 3, 363--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alon, N. and Gutner, S. 2008. Kernels for the dominating set problem on graphs with an excluded minor. Tech. Rep. TR08-066, The Electronic Colloquium on Computational Complexity (ECCC).Google ScholarGoogle Scholar
  3. Alon, N. and Gutner, S. 2009. Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54, 4, 544--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alon, N., Rónyai, L., and Szabó, T. 1999. Norm-graphs: Variations and applications. J. Combinatorial Theory, Series B 76, 2, 280--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Binkele-Raible, D., Fernau, H., Gaspers, S., and Liedloff, M. 2010. Exact exponential-time algorithms for finding bicliques. Inf. Proc. Lett. 111, 2, 64--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bodlaender, H. L., Downey, R. G., Fellows, M. R., and Hermelin, D. 2009a. On problems without polynomial kernels. J. Comput. Syst. Sci. 75, 8, 423--434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bodlaender, H. L., Fomin, F. V., Lokshtanov, D., Penninkx, E., Saurabh, S., and Thilikos, D. M. 2009b. (Meta) Kernelization. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009). IEEE, 629--638. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bollobás, B. 2004. Extremal graph theory. Dover Publications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bollobás, B. and Thomason, A. 1998. Proof of a conjecture of Mader, Erdös and Hajnal on topological complete subgraphs. Eur. J. Combinat. 19, 8, 883--887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, J., Fernau, H., Kanj, I. A., and Xia, G. 2007. Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37, 4, 1077--1106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cygan, M., Pilipczuk, M., Pilipczuk, M., and Wojtaszczyk, J. O. 2010. Kernelization hardness of connectivity problems in d-degenerate graphs. In Graph Theoretic Concepts in Computer Science - 36th International Workshop (WG 2010). Revised Papers. Lecture Notes in Computer Science Series, vol. 6410, Springer, 147--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dawar, A. and Kreutzer, S. 2009. Domination problems in nowhere-dense classes. In Proceedings of the IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009). R. Kannan and K. N. Kumar, Eds., Leibniz International Proceedings in Informatics (LIPIcs) Series, vol. 4, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 157--168.Google ScholarGoogle Scholar
  13. Dell, H. and van Melkebeek, D. 2010. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010). ACM, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Demaine, E. D., Fomin, F. V., Hajiaghayi, M., and Thilikos, D. M. 2005. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52, 6, 866--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Diestel, R. 2005. Graph Theory 3rd Ed. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  16. Dom, M., Lokshtanov, D., and Saurabh, S. 2009. Incompressibility through Colors and IDs. In Proceedings of the International Colloquium on Automata, Languges and Programming (ICALP 2009). Lecture Notes in Computer Science, vol. 5555, Springer, 378--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Downey, R. G. and Fellows, M. R. 1999. Parameterized Complexity. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ehrlich, G. 1973. Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J. ACM 20, 3, 500--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ellis, J. A., Fan, H., and Fellows, M. R. 2004. The dominating set problem is fixed parameter tractable for graphs of bounded genus. J. Algor. 52, 2, 152--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fomin, F. V., Lokshtanov, D., Saurabh, S., and Thilikos, D. M. 2010. Bidimensionality and kernels. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010). SIAM, 503--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Fomin, F. V. and Thilikos, D. M. 2004. Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-Up. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP 2004). Lecture Notes in Computer Science Series, vol. 3142, Springer, 581--592.Google ScholarGoogle ScholarCross RefCross Ref
  23. Fomin, F. V. and Thilikos, D. M. 2006. Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36, 2, 281--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Franceschini, G., Luccio, F., and Pagli, L. 2006. Dense trees: A new look at degenerate graphs. J. Disc. Algor. 4, 455--474.Google ScholarGoogle ScholarCross RefCross Ref
  25. Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP--Completeness. Freeman, San Francisco. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Golovach, P. A. and Villanger, Y. 2008. Parameterized complexity for domination problems on degenerate graphs. In Proceedings of the 34th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2008. Lecture Notes in Computer Science Series, vol. 5344, Springer, 195--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Guo, J. and Niedermeier, R. 2007. Invitation to data reduction and problem kernelization. SIGACT News 38, 1, 31--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gutner, S. 2009. Polynomial kernels and faster algorithms for the dominating set problem on graphs with an excluded minor. In Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC 2009). Springer-Verlag, Berlin, 246--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Habib, M., Paul, C., and Viennot, L. 1998. A synthesis on partition refinement: A useful routine for strings, graphs, Boolean matrices and automata. In Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS 98). M. Morvan, C. Meinel, and D. Krob, Eds., Lecture Notes in Computer Science Series, vol. 1373, Springer, 25--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. 1998a. Domination in Graphs: Advanced topics. Pure and applied mathematics: A series of monographs and textbooks series, vol. 209, Marcel Dekker, Inc.Google ScholarGoogle Scholar
  31. Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. 1998b. Fundamentals of Domination in Graphs. Pure and applied mathematics: A series of monographs and textbooks series, vol. 208, Marcel Dekker, Inc.Google ScholarGoogle Scholar
  32. Komlós, J. and Szemerédi, E. 1996. Topological cliques in graphs II. Combinat. Probab. Comput. 5, 79--90.Google ScholarGoogle ScholarCross RefCross Ref
  33. Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press.Google ScholarGoogle Scholar
  34. Philip, G., Raman, V., and Sikdar, S. 2009. Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels. In Proceedings of the 17th Annual European Symposium on Algorithms (ESA 2009). Lecture Notes in Computer Science Series, vol. 5757, Springer, 694--705.Google ScholarGoogle Scholar
  35. Raman, V. and Saurabh, S. 2008. Short cycles make w-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52, 2, 203--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sachs, H. 1963. Regular graphs with given girth and restricted circuits. J. London Math. Soc. s1-38, 1, 423--429.Google ScholarGoogle Scholar

Index Terms

  1. Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Algorithms
          ACM Transactions on Algorithms  Volume 9, Issue 1
          December 2012
          252 pages
          ISSN:1549-6325
          EISSN:1549-6333
          DOI:10.1145/2390176
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 December 2012
          • Accepted: 1 March 2011
          • Revised: 1 January 2011
          • Received: 1 July 2010
          Published in talg Volume 9, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader