skip to main content
research-article

Modal-space control for articulated characters

Published:22 October 2011Publication History
Skip Abstract Section

Abstract

We present a novel control algorithm for simulating an articulated character performing a given reference motion and its variations. The unique feature of our controller is its ability to make a long-horizon plan at every time step. Our algorithm overcomes the computational hurdle by applying modal analysis on a time-varying linear dynamic system. We exploit the properties of modal coordinates in two ways. First, we design separate control strategies for dynamically decoupled modes. Second, our controller only applies long-horizon planning on a subset of modes, largely reducing the size of the control problem. With this decoupled and reduced control system, the character is able to execute the reference motion while reacting to unexpected perturbations and anticipating changes in the environment. We demonstrate our results by simulating a variety of reference motions, such as walking, squatting, jumping, and swinging.

Skip Supplemental Material Section

Supplemental Material

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation. 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Abe, Y. and Popović, J. 2006. Interactive animation of dynamic manipulation. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation. 195--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allen, B., Chu, D., Shapiro, A., and Faloutsos, P. 2007. On the beat!: Timing and tension for dynamic characters. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 239--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Anitescu, M. and Potra, F. A. 1997. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlin. Dynam. 14, 231--247.Google ScholarGoogle ScholarCross RefCross Ref
  5. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chai, J. and Hodgins, J. K. 2007. Constraint-Based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26, 3, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cohen, M. F. 1992. Interactive spacetime control for animation. In Proceedings of SIGGRAPH. Vol. 26. 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Trans. Graph. 29, 4, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. de Lasa, M. and Hertzmann, A. 2009. Prioritized optimization for task-space control. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-based locomotion controllers. ACM Trans. Graph. 29, 4, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. Vis. Comput. Graph. 3, 3, 201--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH. 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fang, A. C. and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Farley, C. and Morgenroth, D. 1999. Leg stiffness primarily depends on ankle stiffness during human hopping. J. Biomech. 32, 267--273.Google ScholarGoogle ScholarCross RefCross Ref
  16. Georgopoulos, A., Kalaska, J., and Massey, J. 1981. Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty and change in target location. J. Neurophy. 46, 725--743.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of the Graphics Interface Conference. 247--256.Google ScholarGoogle Scholar
  18. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of the SIGGRAPH Conference. 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. Graph. 28, 1, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. James, D. L. and Pai, D. K. 2002. Dyrt: Dynamic response textures for real time deformation simulation with graphics hardware. In Proceedings of the SIGGRAPH Conference. 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kry, P. G., Reveret, L., Faure, F., and Cani, M.-P. 2009. Modal locomotion: Animating virtual characters with natural vibrations. Comput. Graph. Forum 28, 2.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kudoh, S., Komura, T., and Ikeuchi, K. 2006. Stepping motion for a human-like character to maintain balance against large perturbations. In Proceedings of the ICRA Conference. 2661--2666.Google ScholarGoogle Scholar
  23. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of the SIGGRAPH Conference. 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Trans. Graph. 29, 4, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Liu, C. K. and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Trans. Graph. 21, 3, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Liu, Z., Gortler, S. J., and Cohen, M. F. 1994. Hierarchical spacetime control. In Proceedings of the SIGGRAPH Conference. 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. Graph. 28, 3, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Miall, R. C., Weir, D. J., and Stein, J. F. 1985. Visuomotor tracking with delayed visual feedback. Neurosci. 16, 3, 511--520.Google ScholarGoogle ScholarCross RefCross Ref
  29. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. 29, 4, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-Aware nonlinear control of dynamic characters. ACM Trans. Graph. 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Popović, Z. and Witkin, A. 1999. Physically based motion transformation. In Proceedings of the SIGGRAPH Conference. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Raibert, M. H. 1986. Legged Robots That Balance. Massachusetts Institute of Technology, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensinal, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shabana, A. A. 1997. Vibration of Discrete and Continuous Systems. Springer.Google ScholarGoogle Scholar
  35. Sharon, D. and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proceedings of the ICRA Conference.Google ScholarGoogle Scholar
  36. Shiratori, T., Coley, B., Cham, R., and Hodgins, J. K. 2009. Simulating balance recovery responses to trips based on biomechanical principles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graph. 26, 3, 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Stewart, D. E. and Trinkle, J. C. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Engin. 39, 15, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sulejmanpašić, A. and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. van de Panne, M. and Lamouret, A. 1995. Guided optimization for balanced locomotion. In Proceedings of the Computer Animation and Simulation Conference. 165--177.Google ScholarGoogle Scholar
  41. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. Graph. 28, 5, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2010. Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. 29, 4, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Witkin, A. and Kass, M. 1988. Spacetime constraints. In Proceedings of the SIGGRAPH Conference. Vol. 22. 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wooten, W. L. 1998. Simulation of leaping, tumbling, landing, and balancing humans. Ph.D. thesis, Georgia Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wu, J.-c. and Popović, Z. 2010. Terrain-Adaptive bipedal locomotion control. ACM Trans. Graph. 29, 4, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ye, Y. and Liu, C. K. 2008. Animating responsive characters with dynamic constraints in near-unactuated coordinates. ACM Trans. Graph. 27, 5, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ye, Y. and Liu, C. K. 2010. Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29, 4, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Yin, K., Cline, M. B., and Pai, D. K. 2003. Motion perturbation based on simple neuromotor control models. In Proceedings of the Pacific Graphics Conference. 445. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26, 3, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zordan, V. B. and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation. 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Modal-space control for articulated characters

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 5
      October 2011
      198 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2019627
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 October 2011
      • Accepted: 1 May 2011
      • Revised: 1 February 2011
      • Received: 1 October 2010
      Published in tog Volume 30, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader