skip to main content
article

Tailoring quantum architectures to implementation style: a quantum computer for mobile and persistent qubits

Published:09 June 2007Publication History
Skip Abstract Section

Abstract

In recent years, quantum computing (QC) research has moved from the realm of theoretical physics and mathematics into real implementations. With many different potential hardware implementations, quantum computer architecture is a rich field with an opportunity to solve interesting new problems and to revisit old ones. This paper presents a QC architecture tailored to physical implementations with highly mobile and persistent quantum bits (qubits). Implementations with qubit coherency times that are much longer than operation times and qubit transportation times that are orders of magnitude faster than operation times lend greater flexibility to the architecture. This is particularly true in the placement and locality of individual qubits. For concreteness, we assume a physical device model based on electron-spin qubits on liquid helium (eSHe).

Like many conventional computer architectures, QCs focus on the efficient exposure of parallelism.We present here a QC microarchitecture that enjoys increasing computational parallelism with size and latency scaling only linearly with the number of operations. Although an efficient and high level of parallelism is admirable, quantum hardware is still expensive and difficult to build, so we demonstrate how the software may be optimized to reduce an application's hardware requirements by 25% with no performance loss. Because the majority of a QC's time and resources are devoted to quantum error correction, we also present noise modeling results that evaluate error correction procedures. These results demonstrate that idle qubits in memory need only be refreshedapproximately once every one hundred operation cycles.

References

  1. S. Balensiefer, L. Kregor-Stickles, and M. Oskin. An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. In ISCA '05: Proceedings of the 32nd Annual International Symposium on Computer Architecture, pages 186--196, Washington, DC, USA, 2005. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett., 70(13):1895--1899, Mar 1993.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters, 76:722, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. Copsey, M. Oskin, F. T. Chong, I. Chuang, and K. Abdel-Ghaffar. Memory hierarchies for quantum data. Non-Silicon Computing Workshop, 2002.Google ScholarGoogle Scholar
  5. D. Copsey, M. Oskin, T. Metodiev, F. T. Chong, I. Chuang, and J. Kubiatowicz. The effect of communication costs in solid-state quantum architectures. In Symposium on Parallel Architectures and Applications (SPAA) 2003, pages 65--74, June 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. J. Dahm, J. M. Goodkind, I. Karakurt, and S. Pilla. Using Electrons on Liquid Helium for Quantum Computing. Journal of Low Temperature Physics, 126(1--2):709--718, Jan. 2002.Google ScholarGoogle Scholar
  7. T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore. A logarithmic-depth quantum carry-lookahead adder. http://arxiv.org/quant-ph/0406142, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. I. Dykman, P. M. Platzman, and P. Seddighrad. Qubits with electrons on liquid helium. Phys. Rev. B, 67(15):155402, Apr 2003.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature, 421:48--50, Jan. 2003.Google ScholarGoogle ScholarCross RefCross Ref
  10. ILOG. Cplex 9.1.Google ScholarGoogle Scholar
  11. N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz. Interconnection networks for scalable quantum computers. In ISCA '06: Proceedings of the 33rd International Symposium on Computer Architecture, pages 366--377, Washington, DC, USA, 2006. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 393(6681):133--137, May 1998.Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 417:709--711, June 2002.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 81(12):2594--2597, Sep 1998.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. A. Lyon. Spin-based quantum computing using electrons on liquid helium. Phys. Rev. A, 74:052338, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  16. T. S. Metodi and F. T. Chong. Quantum Computing for Computer Architects. Morgan & Claypool, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang. A quantum logic array microarchitecture: Scalable quantum data movement and computation. In International Symposium on Microarchitecture (MICRO-38), Barcelona, Spain, Nov. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cambridge University Press, New York, NY, USA, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Oskin, F. T. Chong, and I. L. Chuang. A practical architecture for reliable quantum computers. Computer, 35(1):79--87, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz. Building quantum wires: the long and the short of it. In ISCA '03: Proceedings of the 30th annual international symposium on Computer architecture, pages 374--387, New York, NY, USA, 2003. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. M. Platzman and M. I. Dykman. Quantum computing with electrons floating on liquid helium. Science, 284:1967--1969, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond., A454:385--410, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. Sabouret. Towards Spin-based Quantum Computing on Liquid Helium. PhD thesis, Princeton University, Princeton, NJ, Jan. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Sabouret and S. A. Lyon. Measurement of the charge transfer efficiency of electrons clocked on superfluid helium. Appl. Phys. Lett., 88:254105, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. E. Schuchman and T. N. Vijaykumar. A program transformation and architecture support for quantum uncomputation. In ASPLOS--XII: Proceedings of the 12th international conference on Architectural support for programming languages and operating systems, pages 252--263, New York, NY, USA, 2006. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput., 26:1484, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Steane. The ion trap quantum information processor. Applied Physics B: Lasers and Optics, 64(6):623--643, June 1997.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Steane. Space, time, parallelism and noise requirements for reliable quantum computing. Fortsch. Phys., 46:443--458, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt. Speed of ion-trap quantum-information processors. Phys. Rev. A, 62(4):042305, Sep 2000.Google ScholarGoogle ScholarCross RefCross Ref
  30. A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77(5):793--797, Jul 1996.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. M. Steane. Active stabilisation, quantum computation and quantum state synthesis. Phys. Rev. Lett., 78:2252--2255, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. M. Steane. Efficient fault--tolerant quantum computing. quant-ph/9809054, 1998.Google ScholarGoogle Scholar
  33. A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  34. A. M. Steane. How to build a 300 bit, 1 Gop quantum computer. ArXiv Quantum Physics e-prints, Dec. 2004.Google ScholarGoogle Scholar
  35. D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. In ISCA '06: Proceedings of the 33rd International Symposium on Computer Architecture, pages 378--390, Washington, DC, USA, 2006. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S.-A.-A. Touati and L. Benmouffok. Logical linear programming tool for optimizing compilation. http://www.prism.uvsq.fr/~touati/sw/loci/, 2005.Google ScholarGoogle Scholar
  37. K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer programming. In PLDI '00: Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementation, pages 121--133, New York, NY, USA, 2000. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tailoring quantum architectures to implementation style: a quantum computer for mobile and persistent qubits

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGARCH Computer Architecture News
        ACM SIGARCH Computer Architecture News  Volume 35, Issue 2
        May 2007
        527 pages
        ISSN:0163-5964
        DOI:10.1145/1273440
        Issue’s Table of Contents
        • cover image ACM Conferences
          ISCA '07: Proceedings of the 34th annual international symposium on Computer architecture
          June 2007
          542 pages
          ISBN:9781595937063
          DOI:10.1145/1250662
          • General Chair:
          • Dean Tullsen,
          • Program Chair:
          • Brad Calder

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 9 June 2007

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader