Skip to main content
Log in

Tsallis HDE-based reconstruction via correspondence scheme in a generalized torsion scalar theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present study is devoted to calculate the form of generic function present in the Lagrangian of the most generalized teleparallel gravity based on higher-order derivative terms of torsion scalar using reconstruction scheme. Our primary objective is to obtain the form of Lagrangian coming from the Tsallis holographic dark energy model with Hubble horizon as IR cutoff through correspondence scheme of reconstruction. For this purpose, the flat FRW geometry filled with perfect fluid as ordinary matter contents is taken into account along with the power law form of scale factor. The cosmological significance of the reconstructed models is then explored graphically by using some cosmic measures like the EoS parameter for dark energy and the null energy condition. Also, we discuss the stability of the reconstructed models through speed of sound graphically. Further we discuss the reconstruction of this Lagrangian for power law and logarithmic corrected Tsallis HDE models. Lastly, we reconstruct the generic function of Lagrangian by taking new agegraphic Tsallis holographic dark energy into account. It is found that majority of the new reconstructed models are stable and cosmologically interesting (consistent with the cosmic observations) for the selected choices of involved free parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. A.G. Riess et al., Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  3. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  4. S.W. Allen, R.W. Schmidt, H. Ebeling, A.C. Fabian, L.V. Speybroeck, Mon. Not. R. Astron. Soc. 353, 457 (2004)

    Article  ADS  Google Scholar 

  5. M. Tegmark et al., Phys. Rev. D 69, 03501 (2004)

    Article  Google Scholar 

  6. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  7. V. Gorini, A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Rev. D 69, 123512 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.L. Murphy, Phys. Rev. D 8, 4231 (1973)

    Article  ADS  Google Scholar 

  9. M.O. Calvao, H.P. de Oliveira, D. Pavon, J.M. Salim, Phys. Rev. D 45, 3869 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Padmanabhan, Gen. Relativ. Gravit. 40, 529 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Chaplygin, Sci. Mem. Mosc. Univ. Math. Phys. 21, 1 (1904)

    Google Scholar 

  12. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  13. F.S.N. Lobo, The Dark Side of Gravity: Modified Theories of Gravity, invited chapter to appear in an edited collection “Dark Energy-Current Advances and Ideas”. arXiv:0807.1640

  14. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Cognola et al., Phys. Rev. D 73, 084007 (2006)

    Article  ADS  Google Scholar 

  16. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010)

    Article  ADS  Google Scholar 

  17. M.E. Rodrigues, M.J.S. Houndjo, D. Momeni, R. Myrzakulov, Can. J. Phys. 92, 173 (2014)

    Article  ADS  Google Scholar 

  18. S.D. Odintsov, V.K. Oikonomoude, S. Banerjee, Nucl. Phys. B 938, 935 (2019)

    Article  ADS  Google Scholar 

  19. D. Wang, D. Mota, Phys. Dark Universe 32, 100813 (2021)

    Article  Google Scholar 

  20. C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic Publishers, 2014)

    MATH  Google Scholar 

  22. M. Sharif, S. Waheed, Int. J. Mod. Phys. D 21, 1250082 (2012)

    Article  ADS  Google Scholar 

  23. S. Bahamonde, K. Bamba, U. Camci, JCAP 02, 016 (2019)

    Article  ADS  Google Scholar 

  24. S. Waheed, I. Nawazish, M. Zubair, Eur. Phys. J. C 81, 1 (2021)

    Article  Google Scholar 

  25. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  27. T. Wang, Phys. Rev. D 84, 024042 (2011)

    Article  ADS  Google Scholar 

  28. T. Harko, F.S.N. Lobo, G. Otalora, E.N. Saridakis, JCAP 12, 021 (2014)

    Article  ADS  Google Scholar 

  29. G. Kofinas, G. Leon, E.N. Saridakis, Class. Quantum Grav. 31, 175011 (2014)

    Article  ADS  Google Scholar 

  30. S. Bahamonde, C.G. Böehmer, Eur. Phys. J. C 76(10), 578 (2016)

    Article  ADS  Google Scholar 

  31. S. Bahamonde, S. Capozziello, Eur. Phys. J. C 77(2), 107 (2017)

    Article  ADS  Google Scholar 

  32. A.Z. Kaczmarek, D. Szczesniak, Sci. Rep. 10, 18076 (2020)

    Article  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  34. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  35. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, 2011)

    Book  MATH  Google Scholar 

  36. H. Farajollahi, M.R. Setare, F. Milani, F. Tayebi, Gen. Relat. Gravit. 43, 1657 (2010)

    Article  ADS  Google Scholar 

  37. M. Zubair, F. Kousar, S. Waheed, Int. J. Mod. Phys. D 27, 1850115 (2018)

    Article  ADS  Google Scholar 

  38. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  39. M.J.S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)

    Article  ADS  Google Scholar 

  40. F.G. Alvarenga, Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  41. S.D. Odintsov, D. Saez-Gomez, Phys. Lett. B 725, 437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. G. Mustafa, M. Zubair, S. Waheed, X. Tiecheng, Eur. Phys. J. C 80, 1 (2020)

    Article  Google Scholar 

  43. S. Capozziello, G. amd Lambiase, Gen. Relat. Gravit. 32, 295 (2000)

    Article  ADS  Google Scholar 

  44. A.Z. Kaczmarek, D. Szczesniak, Sci. Rep. 11, 18363 (2021)

    Article  ADS  Google Scholar 

  45. R. Myrzakulov, Eur. Phys. J. C 72, 2203 (2012)

    Article  ADS  Google Scholar 

  46. R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction (Springer, Dordrecht, 2013)

    Book  MATH  Google Scholar 

  47. J.G. Pereira, Teleparallelism: A New Insight into Gravitation (Springer, Dordrecht, 2013)

    Google Scholar 

  48. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. KI. 217–221 (1928)

  49. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. KI. 224 (1928)

  50. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  51. J.W. Maluf, Ann. Phys. 525, 339 (2013)

    Article  MathSciNet  Google Scholar 

  52. H. Arcos, J.G. Pereira, Int. J. Mod. Phys. D 13, 2193 (2004)

    Article  ADS  Google Scholar 

  53. J.G. Pereira, N. Obukhov, Universe 5, 139 (2019)

    Article  ADS  Google Scholar 

  54. M. Fontanini, E. Huguet, M.L. Delliou, Phys. Rev. D 99, 064006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Krššák et al., Class. Quantum Grav. 36, 183001 (2019)

    Article  ADS  Google Scholar 

  56. G. Kofinas, E.N. Saridakis, Phys. Rev. D 90, 084044 (2014)

    Article  ADS  Google Scholar 

  57. S. Waheed, M. Zubair, Astrophys. Space Sci. 359, 1 (2015)

    Article  Google Scholar 

  58. T. Harko, F.S.N. Lobo, G. Otalora, E.N. Saridakis, Phys. Rev. D 89, 124036 (2014)

    Article  ADS  Google Scholar 

  59. M. Zubair, S. Waheed, Astrophys. Space Sci. 355, 361 (2015)

    Article  ADS  Google Scholar 

  60. S. Bahamonde, C.G. Böehmer, M. Wright, Phys. Rev. D 92, 104042 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Sebastian, M. Zubair, G. Abbas, Phys. Dark Universe 19, 78 (2018)

    Article  ADS  Google Scholar 

  62. C. Escamilla-Rivera, J.L. Said, Class. Quantum Grav. 37, 165002 (2020)

    Article  ADS  Google Scholar 

  63. S. Bahamonde, C.G. Böehmer, M. Krššák, Phys. Lett. B 775, 37 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  64. G. Otalora, E.N. Saridakis, Phys. Rev. D 94, 084021 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  65. T. Azizi, M. Gorjizadeh, Eur. Phys. Lett. 117, 60003 (2017)

    Article  ADS  Google Scholar 

  66. S. Waheed, M. Zubair, Eur. Phys. J. C 79, 1 (2019)

    Article  Google Scholar 

  67. M. Gonzalez-Espinoza, G. Otalora, L. Kraiselburd, S. Landau, JCAP 05, 010 (2022)

    Article  ADS  Google Scholar 

  68. S. Nojiri, S.D. Odintsov, Phys. Lett. B 576, 5 (2003)

    Article  ADS  Google Scholar 

  69. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)

    Article  ADS  Google Scholar 

  70. S. Nojiri, S.D. Odintsov, J. Phys. Conf. Ser. 66, 012005 (2007)

    Article  Google Scholar 

  71. K. Karami, M.S. Khaledian, J. High Energy Phys. 03, 086 (2011)

    Article  ADS  Google Scholar 

  72. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez, Class. Quantum Grav. 27, 9 (2010)

    Article  Google Scholar 

  73. M.J.S. Houndjo, O.F. Piattella, Int. J. Mod. Phys. D 21, 1250024 (2012)

    Article  ADS  Google Scholar 

  74. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 064001 (2013)

    Article  ADS  Google Scholar 

  75. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Eur. Phys. J. C 72, 1893 (2012)

    Article  ADS  Google Scholar 

  76. K. Bamba, R. Myrzakulov, S. Nojiri, S.D. Odintsov, Phys. Rev. D 85, 104036 (2012)

    Article  ADS  Google Scholar 

  77. J.B. Dent, S. Dutta, E.N. Saridakis, JCAP 1101, 009 (2011)

    Article  ADS  Google Scholar 

  78. M. Sharif, S. Saba, Symmetry 11, 92 (2019)

    Article  ADS  Google Scholar 

  79. A.A. Aly, Eur. Phys. J. Plus 134, 335 (2019)

    Article  Google Scholar 

  80. M. Gonzalez-Espinoza, R. Herrera, G. Otalora, J. Saavedra, Eur. Phys. J. C 81, 731 (2021)

    Article  ADS  Google Scholar 

  81. S. Chakrabarti, J.L. Said, K. Bamba, Eur. Phys. J. C 79, 454 (2019)

    Article  ADS  Google Scholar 

  82. D. Momeni, R. Myrzakulov, Int. J. Geom. Methods Mod. Phys. 11, 1450077 (2014)

    Article  MathSciNet  Google Scholar 

  83. M. Zubair, S. Waheed, A. Fayyaz, I. Ahmad, Eur. Phys. J. Plus 133, 452 (2018)

    Article  Google Scholar 

  84. M. Zubair, L.R. Durrani, S. Waheed, Eur. Phys. J. Plus 136, 1 (2021)

    Article  Google Scholar 

  85. S. Waheed, Eur. Phys. J. Plus 135, 11 (2020)

    Article  Google Scholar 

  86. C. Tsallis, L.J.L. Citro, Eur. Phys. J. C 73, 2487 (2013)

    Article  ADS  Google Scholar 

  87. R.C. Nunes et al., JCAP 08, 051 (2016)

    Article  ADS  Google Scholar 

  88. S. Ghaffari, H. Moradpour, J.P.M. Graca, V. Bezerra, Eur. Phys. J. C 78, 706 (2018)

    Article  ADS  Google Scholar 

  89. S. Waheed, Int. J. Geom. Methods Mod. Phys. (To appear, 2022)

  90. G.F. Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)

    Article  ADS  Google Scholar 

  91. P.A.R. Ade et al., Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  92. M.A. Zadeh, A. Sheykhi, H. Moradpour, Mod. Phys. Lett. A 34, 1950086 (2019)

    Article  ADS  Google Scholar 

  93. S. Maity, U. Debnath, Eur. Phys. J. Plus 134, 514 (2019)

    Article  Google Scholar 

  94. A. Iqbal, A. Jawad, Phys. Dark Universe 26, 100349 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Waheed.

Appendix

Appendix

For the case \(F(T, X_1)=f(T)+g(X_1)\), the speed of sound can be evaluated by using chain rule and is given by

$$\begin{aligned} v_{s}^2=&\frac{\dot{P}_m}{\dot{\rho _m}}=-4\left( 24 \dot{H}^3 \left( (H+3) \dot{g}_{\text {X1}}+24 H g_{\text {X1}}\right) +96 H \ddot{H}^2 g_{\text {X1}}\right) \nonumber \\& \quad -4\left( \ddot{H} \left( 72 H^2 \left( 2 H \dot{g}_{X1}+\ddot{g}_{X1}\right) +f_T-\kappa ^2\right) +H \left( \ddot{f}_T+72 H \dddot{H} \dot{g}_{\text {X1}}+24 H \ddddot{H} g_{\text {X1}}\right) \right) \nonumber \\& \quad -4\left( \dot{H} \left( 24 H \left( 14 \ddot{H}\dot{g}_{X1}+H \left( 3 H \ddot{g}_{X1}+\ddot{g}_{X1}\right) +\left( 9 H \ddot{H}+(3 H+2) \dddot{H}\right) g_{\text {X1}}\right) +2 \dot{f}_T-3 H \kappa ^2\right) \right) \nonumber \\& \quad -4\left( +24 \dot{H}^2 \left( H \left( 3 H (4 H+3) \dot{g}_{X1}+5 \ddot{g}_{X1}\right) +\left( 5\ddot{H} +4\dddot{H}\right) \left( f+g_{\text {X1}}\right) \right) \right) \big / (\dot{f}+\dot{g})\nonumber \\& \quad +12H\left( H \left( 24 H \left( 2 \ddot{H} \dot{g}_{X1}+\left( 3 H \ddot{H}+\dddot{H}\right) g_{\text {X1}}\right) +\dot{f}_{T}\right) +72 H \dot{H}^2 \left( \dot{g}_{X1}+4 H g_{\text {X1}}\right) \right) \nonumber \\& \quad +\dot{H}\left( 24 H \left( H \left( 3 H \dot{g}_{X1}+\ddot{g}_{X1}\right) +3 \ddot{H}g_{\text {X1}}\right) +2 f_T+1\right) . \end{aligned}$$
(49)

For the case \(F(T,X_1)=f(T)g(X_1)\), time rate of energy density and pressure for DE are given by

$$\begin{aligned} \dot{P}_D & = -6H\dot{H}-2\ddot{H}+2\left[ 2\dot{F}_T\dot{H}+F_T\ddot{H}+H\ddot{F}_T+24\dot{H}(2H\ddot{H}+3\dot{H}^2+3H^2\dot{H})\dot{F}_{X_1}+ 24H\ddot{F}_{X_1}(2H\ddot{H}+3\dot{H}^2+3H^2\dot{H})\right. \nonumber \\& \quad +\left. 24H\dot{F}_{X_1}(8\dot{H}\ddot{H}+2H\dddot{H}+6H\dot{H}^2+3H^2\ddot{H}) +48H\dot{H}^2\ddot{F}_{X_1}+24H^2\ddot{H}\ddot{F}_{X_1}+24H^2\dot{H}\dddot{F}_{X_1}+48H\dot{H}\dddot{H}F_{X_1}\right. \nonumber \\& \quad +\left. 24H^2\ddddot{H}F_{X_1} +24H^2\dddot{H}\dot{F}_{X_1}+24\dot{F}_{X_1}\dot{H}^2(12H^2+\dot{H})+48F_{X_1}\dot{H}\ddot{H}(12H^2+\dot{H})+24F_{X_1}\dot{H}^2(24H\dot{H}+\ddot{H})\right. \nonumber \\& \quad +\left. 24\dot{H}F_{X_1}\ddot{H}(4\dot{H}+3H^2)+24H\dot{F}_{X_1}\ddot{H}(4\dot{H}+3H^2)+24HF_{X_1}\dddot{H}(4\dot{H}+3H^2) +24HF_{X_1}\ddot{H}(4\ddot{H}+6H\dot{H})\right] , \end{aligned}$$
(50)
$$\begin{aligned} \dot{\rho }_D & = -\frac{\dot{F}}{2}-6H^2\dot{F}_T-12H\dot{H}F_T+6H\dot{H}-6\dot{H}(24H^2F_{X_1})(3H\dot{H}+\ddot{H})-6H(48H\dot{H}F_{X_1} +24H^2\dot{F}_{X_1})(3H\dot{H}+\ddot{H})\nonumber \\& \quad -6H(24H^2F_{X_1})(3\dot{H}^2+3H\ddot{H}+\dddot{H})-(144)(3)H^2\dot{H}^2\dot{F}_{X_1}-144H^3\ddot{H}\dot{F}_{X_1}-144H^3\dot{H}\ddot{F}_{X_1}. \end{aligned}$$
(51)

Consequently, we calculate \(v_s^2\) for this case as follows

$$\begin{aligned} v_{s}^2=&-4\left( 24 \dot{H}^3 \left( (H+3) \left( f \dot{g}_{X1}+\dot{f} g_{\text {X1}}\right) +24 f H g_{\text {X1}}\right) +96 f H \ddot{H}^2 g_{\text {X1}}\right) \nonumber \\& \quad -4\left( H \left( 72 H \dddot{H} \left( f \dot{g}_{X1}+\dot{f} g_{\text {X1}}\right) +2\dot{g}\dot{f}_T+g \ddot{f}_T+24 f H \ddddot{H} g_{\text {X1}}+f_T \ddot{g}\right) \right) \nonumber \\& \quad -4\left( \ddot{H}\left( 72 H^2\left( 2H\left( f\dot{g}_{X1}+\dot{f} g_{\text {X1}}\right) +2\dot{f}\dot{g}_{X1} +f \ddot{g}_{X1}+\ddot{f} g_{\text {X1}}\right) +g f_T-\kappa ^2\right) \right) \nonumber \\& \quad -4\left( 24\dot{H}^2\left( f \left( 5 \ddot{H}+4 \dddot{H}\right) g_{\text {X1}}+H\left( 3 H (4 H+3) \left( f \dot{g}_{X1}+\dot{f} g_{\text {X1}}\right) \right) \right) \right) \nonumber \\& \quad -4\left( 24\dot{H}^2\left( H \left( 3 H (4 H+3) \left( f \dot{g}_{X1}+\dot{f} g_{\text {X1}}\right) \right) +f \left( 5 \ddot{H}+4 \dddot{H}\right) g_{\text {X1}}\right) \right) \nonumber \\& \quad -20\left( 24\left( 2 \dot{f} \dot{g}_{X1}+f \ddot{g}_{X1}+\ddot{f} g_{\text {X1}}\right) \right) \nonumber \\& \quad -4\left( \dot{H} \left( 24 H \left( 14 \ddot{H}\left( f \dot{g}_{X1}+f_t g_{\text {X1}}\right) +f \left( 9 H \ddot{H}+(3 H+2) \dddot{H}\right) g_{\text {X1}}\right) +2 \left( g \dot{f}_T+f_T \dot{g}\right) -3 H \kappa ^2\right) \right) \nonumber \\& \quad -4\left( H \left( 3 H \left( 2 \dot{f} \dot{g}_{X1}+f \ddot{g}_{X1}+\ddot{f}g_{\text {X1}}\right) +3\ddot{f}\dot{g}_{X1}+3\dot{f}\ddot{g}_{X1}+f\dddot{g}_{X1}+\dddot{f} g_{\text {X1}}\right) \right) \big /f\dot{g}+f \dot{g}_{X1}\nonumber \\& \quad +12H\left( 72 H \dot{H}^2 \left( f \dot{g}_{X1}+4 f H g_{X1}+\dot{f}g_{X1}\right) +H(g\dot{f}_{T}+24H\left( f\left( 3H \ddot{H} +\dddot{H}\right) g_{\text {X1}}\right) +f_T \dot{g}\right) .\nonumber \\& \quad + 12H\left( \dot{H} \left( 24 H \left( H \left( 3 H \left( f \dot{g}_{X1}+\dot{f} g_{\text {X1}}\right) +2 \dot{f} \dot{g}_{X1}+f \ddot{g}_{X1}+\ddot{f} g_{\text {X1}}\right) +3 f \ddot{H} g_{\text {X1}}\right) +2 g f_T +2 \ddot{H} \left( f \dot{g}_{X1}+\dot{f}_T g_{\text {X1}}\right) \right) \right) . \end{aligned}$$
(52)

The second and third-order time rates of H,  T and \(X_2\) can be shifted in terms of \(X_2\) as follows

$$\begin{aligned}&\ddot{H}=-2b\left( \frac{X_2}{-36b^2(1-b)}\right) ^{3/4}, \quad \dddot{H}=\frac{X_2}{6(1-b)}, \quad \ddot{T}=-\frac{X_2}{1-b}, \quad \dddot{T}=-144b^2\left( \frac{X_2}{-36b^2(1-b)}\right) ^{5/4},\nonumber \\&\ddot{X}_2=-720b^2(1-b)\left( \frac{X_2}{-36b^2(1-b)}\right) ^{3/2}, \quad \dddot{X}_2=-4320b^2(1-b)\left( \frac{X_2}{-36b^2(1-b)}\right) ^{7/4}. \end{aligned}$$
(53)

Other higher-order time rates will be shifted in a similar fashion. For function \(F(T,X_2)=f(T)+g(X_2)\), the squared speed of sound can be computed as follows

$$\begin{aligned} v_s^2 & = -4\left( \dot{H}\left( 2\dot{f}_{T}+6 H \ddot{g}_{X2}+2\dddot{g}_{X2}+12H\dddot{g}_{X2}-3H\kappa ^2\right) +12\dot{H}^2\dot{g}_{X2}\right. \nonumber \\& \quad +\left. \ddot{H} \left( (12 H+1) \ddot{g}_{X2}+f_T-\kappa ^2\right) +H \left( \ddot{f}_T+(3 H+1)\dddot{g}_{X2}\right) \right) \big /\nonumber \\& \quad +\dot{f}+\dot{g}+12\left( \dot{H}^2 \left( -\dot{g}_{X2}+(3 H+1) g_{\text {X2}}+H\right) +2 H \dot{H} f_T\right. \nonumber \\& \quad + \left. H \left( H \dot{f}_T+2\ddot{H} \dot{g}_{X2}+H \dddot{g}_{X2}+\dddot{H} g_{\text {X2}}\right) +2 \dot{H} \left( H\left( 6 H \dot{g}_{X2}+\ddot{g}_{X2}\right) +\ddot{H} g_{\text {X2}}\right) \right) . \end{aligned}$$
(54)

For the function \(F(T,X_2)=f(T)g(X_2)\), the time rates of energy density and pressure for DE can be written as

$$\begin{aligned} \dot{P}_D & = -6H\dot{H}-2\ddot{H}+2\left( 2\dot{F}_T\dot{H}+F_T\ddot{H}+H\ddot{F}_T+12\dot{H}^2\dot{F}_{X_2}+12H\ddot{H}\dot{F}_{X_2}+ 12H\dot{H}\ddot{F}_{X_2}+(\ddot{H}+6H\dot{H})\ddot{F}_{X_2}\right. \nonumber \\& \qquad +\left. (\dot{H}+3H^2)\dddot{F}_{X_2}+\dot{H}\dddot{F}_{X_2}+H\ddddot{F}_{X_2}\right) , \end{aligned}$$
(55)
$$\begin{aligned} \dot{\rho }_{D} & = -\frac{\dot{F}}{2}-6H^2\dot{F}_T-12H\dot{H}F_T+6H\dot{H}-6\dot{F}_{X_2}\dot{H}^2-12F_{X_2}\dot{H}\ddot{H}-6\dot{H}F_{X_2}(3H\dot{H}+\ddot{H}) -6\dot{F}_{X_2}H(3H\dot{H}+\ddot{H})\nonumber \\& \quad -6HF_{X_2}(3\dot{H}^2+\dddot{H})-6\dot{H}\dot{F}_{X_2}(3H^2-\dot{H})-6H\ddot{F}_{X_2}(3H^2-\dot{H}) -6H\dot{F}_{X_2}(6H\dot{H}-\ddot{H})-12H\dot{H}\ddot{F}_{X_2}-6H^2\dddot{F}_{X_2}. \end{aligned}$$
(56)

Using above relations, we can check the stability of the solution by the following speed of sound parameter

$$\begin{aligned} v_s^2 & = -4 \left( \ddot{H} \left( (12 H+1) \left( 2 \dot{f} \dot{g}_{X2}+f \ddot{g}_{X2}+\ddot{f} g_{\text {X2}}\right) +gf_T-\kappa ^2\right) +12 \dot{H}^2 \left( f \dot{g}_{X2}+\dot{f} g_{\text {X2}}\right) \right) \nonumber \\& \quad -4\dot{H}\left( 6 H \left( 2 \dot{f} \dot{g}_{X2}+f \ddot{g}_{X2}+\ddot{f} g_{\text {X2}}\right) +2 \left( g \dot{f}_T+f_T \dot{g}\right) +2 \left( 3 \ddot{f}\dot{g}_{X2}+3\dot{f}\ddot{g}_{X2}+f \dddot{g}_{X2}+\dddot{f} g_{\text {X2}}\right) -3 H \kappa ^2\right) \nonumber \\& \quad -4\left( 12 H \dot{H} \left( 3\ddot{f} \dot{g}_{X2}+3\dot{f}\ddot{g}_{X2}+f \dddot{g}_{X2}+\dddot{f} g_{\text {X2}}\right) \right) \nonumber \\& \quad -4H\left( (3H+1)\left( 3\ddot{f}\dot{g}_{X2}+3\dot{f}\ddot{g}_{X2}+f\dddot{g}_{X2}+\dddot{f} g_{\text {X2}}\right) +2\dot{g}\dot{f}_{T}+g\ddot{f}_{T}+f_T \ddot{g}_{X2}\right) \big /\nonumber \\& \quad \dot{f}+\dot{g}+12\left( 2 g H \dot{H} f_T+\dot{H}^2 \left( -f \dot{g}_{X2}-\dot{f} g_{\text {X2}}+(3 H+1) g_{\text {X2}}+H\right) \right) \nonumber \\& \quad +24 \dot{H} \left( H \left( 6 H \left( f \dot{g}_{X2}+\dot{f} g_{\text {X2}}\right) +2 \dot{f} \dot{g}_{X2}+f \ddot{g}_{X2}+\ddot{f} g_{\text {X2}}\right) +\ddot{H} g_{\text {X2}}\right) \nonumber \\& \quad +12 H \left( H \left( g \dot{f}_T +\dot{f}_T \dot{g}\right) +H\left( 3 \ddot{f} \dot{g}_{X2} +3 \dot{f} \ddot{g}_{X2}+f \dddot{g}_{X2}+\dddot{f} g_{\text {X2}}\right) +2 \ddot{H} \left( f \dot{g}_{X2}+f_t g_{\text {X2}}\right) +\dddot{H} g_{\text {X2}}\right) . \end{aligned}$$
(57)

The term \(\Theta _1\) present in Eq. (34) is given by the following expression:

$$\begin{aligned} \Theta _1 & = 91\times 2^{(\alpha +2\delta )/3}3^{(3+\alpha +2\delta )/3}BX_1^{2/3}-49(-1)^{2\delta }2^{(2+\alpha )/3}3^{(11+\alpha )/3}X_1^{(1+\delta )/3}\nonumber \\& \quad -455\times 2^{(3+\alpha +2\delta )/3}\times 3^{(\alpha +2\delta )/3}BX_1^{2/3}\alpha +245(-1)^{2\delta }2^{(5+\alpha )/3}\times 3^{(8-\alpha )/3} X_1^{(1+\delta )/3}\alpha +91\times 6^{(\alpha +2\delta )/3}BX_2^{2/3}\alpha ^2\nonumber \\& \quad - 49(-1)^{2\delta }2^{(2+\alpha )/3}\times 3^{(8+\alpha )/3}X_1^{(1+\delta )/3}\alpha ^2+11466(-1)^{\alpha +2\delta }6^{1/3}X_1^{(\alpha +2\delta )/6}\beta _1 +7(-1)^{2\delta }6^{(8+\alpha )/3}X_1^{(1+\delta )/3}\delta \nonumber \\& \quad - 35(-1)^{-2\delta }2^{(11+\alpha )/3}\times 3^{(5+\alpha )/3}X_1^{(1+\delta )/3}\alpha \delta +7(-1)^{2\delta }2^{(8+\alpha )/3} \times 3^{(5+\alpha )/3}X_1^{(1+\delta )/3}\delta \alpha ^2\nonumber \\& \quad - 2184(-1)^{\alpha +2\delta }6^{1/3}\beta _1\delta X_1^{(\alpha +2\delta )/6}+7(-1)^{2\delta }6^{(8+\alpha )/3}X_1^{(1+\alpha )/3}\delta ^2 -35(-1)^{2\delta }2^{(11+\alpha )/3}\times 3^{(5+\alpha )/3}X_1^{(1+\delta )/3}\alpha \delta ^2\nonumber \\& \quad + 7(-1)^{2\delta }2^{(8+\alpha )/3}\times 3^{(5+\alpha )/3}X_1^{(1+\alpha )/3}\delta ^2\alpha ^2-2184(-1)^{\alpha +2\delta }6^{1/3}\beta _1\delta ^2X_1^{(\alpha +2\delta )/6}\nonumber \\& \quad +455(-1)^{2\delta }2^{(4+\alpha )/3}\times 3^{(10+\alpha )/3}X_1^{(3+\delta )/3}\lambda -2275(-1)^{2\delta }6^{(7+\alpha )/3}X_1^{(3+\delta )/3}\alpha \lambda \nonumber \\& \quad +455(-1)^{2\delta }2^{(4+\alpha )/3}\times 3^{(7+\alpha )/3}X_1^{(3+\delta )/3}\alpha ^2\lambda -65(-1)^{2\delta }2^{(10+\alpha )/3}\times 3^{(7+\alpha )/3} X_1^{(3+\delta )/3}\delta \lambda \nonumber \\& \quad +325(-1)^{2\delta }2^{(13+\alpha )/3}\times 3^{(4+\alpha )/3}X_1^{(3+\delta )/3}\alpha \delta \lambda + 65(-1)^{2\delta }2^{(10+\alpha )/3}\times 3^{(4+\alpha )/3}X_1^{(3+\delta )/3}\alpha ^2\delta \lambda \nonumber \\& \quad -65(-1)^{2\delta }2^{(10+\alpha )/3}\times 3^{(7+\alpha )/3}X_1^{(3+\delta )/3}\delta ^2\lambda +325(-1)^{2\delta }2^{(13+\alpha )/3}\times 3^{(4+\alpha )/3}X_1^{(3+\delta )/3}\alpha \delta ^2\lambda \nonumber \\& \quad -65(-1)^{2\delta }2^{(10+\alpha )/3}\times 3^{(4+\alpha )/3}X_1^{(3+\delta )/3}\alpha ^2\delta ^2\lambda \end{aligned}$$
(58)

The term \(\Theta _2\) present in Eq. (35) can be defined as follows

$$\begin{aligned} \Theta _2 & = 637\times 2^{2\delta /3}\times 3^{(6+2\delta )/3}(-1)^{-2\delta }BX_1^{4/3}-27783\times 6^{2/3}X_1^{(3+\delta )/3}+1092\times X_1^{(4+\delta )/3}\beta _2+5733\times X_1^{(4+\delta )/3}\beta _3\nonumber \\& \quad +5292\times 6^{2/3}X_1^{(3+\delta )/3}\delta -208X_1^{(4+\delta )/3}\beta _2\delta -1092\times X_1^{(4+\delta )/3}\times \beta _3\delta +5292\times 6^{2/3}X_1^{(3+\delta )/3}\delta ^2-208X_1^{(4+\delta )/3}\beta _2\delta ^2\nonumber \\& \quad -1092X_1^{(4+\delta )/3}\beta _3\delta ^2+515970\times 6^{1/3}X_1^{(5+\delta )/3}\lambda -98280\times 6^{1/3}X_1^{(5+\delta )/3}\delta \lambda -98280\times 6^{1/3}X_1^{(5+\delta )/3}\delta ^2\lambda \nonumber \\& \quad +5733X_1^{(4+\delta )/3}\beta _2\ln \left(\frac{6^{2/3}}{X_1^{1/3}}\right)-1092X_1^{(4+\delta )/3}\beta _2\delta \ln \left(\frac{6^{2/3}}{X_1^{1/3}}\right) -1092X_1^{(4+\delta )/3}\beta _2\delta ^2\ln \left(\frac{6^{2/3}}{X_1^{1/3}}\right). \end{aligned}$$
(59)

The terms \(\Psi _1\) and \(\Psi _2\) present in Eq. (36) are defined by

$$\begin{aligned} \Psi _1 & = -1175\times 2^{2\delta /3}\times 3^{(3+2\delta )/3}X_1^{2/3}+6075\times 6^{2/3}X_1^{(1+\delta )/3} +47\times 2^{2\delta /3}\times 3^{(9+2\delta )/3}X_1^{(\alpha +2\delta )/6}\nonumber \\& \qquad +47\times 2^{(12+2\delta )/3}\times 3^{2\delta /3}X_1^{2/3}\alpha -1296\times 6^{2/3}X_1^{(1+\delta )/3}\alpha -47\times 6^{2\delta /3}X_1^{2/3}\alpha ^2+81\times 6^{2/3}X_1^{(1+\delta )/3}\alpha ^2\nonumber \\& \qquad +3600\times 6^{2/3}X_1^{(1+\delta )/3}\delta +47\times 2^{(12+2\delta )/3}\times 3^{2\delta /3}X_1^{(\alpha +2\delta )/6}\delta -768\times 6^{2/3}X_1^{(1+\delta )/3}\alpha \delta +48\times 6^{2/3}X_1^{(1+\alpha )/3}\alpha ^2\delta \nonumber \\& \qquad+900\times 6^{2/3}X_1^{(1+\delta )/3}\delta ^2 47\times 2^{(6+2\delta )/3}\times 3^{2\delta /3}X_1^{(\alpha +2\delta )/6}\delta ^2 -192\times 6^{2/3}X_1^{(1+\delta )/3}\alpha \delta ^2+12\times 6^{2/3}X_1^{(1+\delta )/3}\alpha ^2\delta ^2, \end{aligned}$$
(60)
$$\begin{aligned} \Psi _2 & = -1175\times 2^{2\delta /3}\times 3^{(3+2\delta )/3}X_1^{2/3}-6075\times 6^{2/3}X_1^{(1+\delta )/3} +47\times 2^{2\delta /3}\times 3^{(9+2\delta )/3}X_1^{(\alpha +2\delta )/6}\nonumber \\& \qquad +47\times 2^{(12+2\delta )/3}\times 3^{2\delta /3}X_1^{2/3}\alpha -1296\times 6^{2/3}X_1^{(1+\delta )/3}\alpha -47\times 6^{2\delta /3}X_1^{2/3}\alpha ^2+81\times 6^{2/3}X_1^{(1+\delta )/3}\alpha ^2\nonumber \\& \qquad +3600\times 6^{2/3}X_1^{(1+\delta )/3}\delta +47\times 2^{(12+2\delta )/3}\times 3^{2\delta /3}X_1^{(\alpha +2\delta )/6}\delta - 768\times 6^{2/3}X_1^{(1+\delta )/3}\alpha \delta +48\times 6^{2/3}X_1^{(1+\delta )/3}\alpha ^2\delta \nonumber \\& \qquad+900\times 6^{2/3}X_1^{(1+\delta )/3}\delta ^2+47\times 2^{(6+2\delta )/3}\times 3^{2\delta /3}X_1^{(\alpha +2\delta )/6}\delta ^2 -192\times 6^{2/3}X_1^{(1+\delta )/3}\alpha \delta ^2+12\times 6^{2/3}X_1^{(1+\delta )/3}\alpha ^2\delta ^2]. \end{aligned}$$
(61)

The term \(\Upsilon \) present in Eq. (40) is given by

$$\begin{aligned} \Upsilon & = -38\times 3^{9+\delta }X_2^{3/2}(-1)^{-2\delta }+9565938X_2^{(2+\delta )/2}\delta +134631720X_2^{(4+\delta )/2}\delta -612009X_2^{(3+\delta )/2}\beta _2\delta \nonumber \\&\qquad -1417176X_2^{(2+\delta )/2}\delta ^2(1+\delta )-19945440X_2^{(4+\delta )/2}\delta ^2(1+\delta )+90668\beta _2X_2^{(3+\delta )/2}\delta ^2(1+\delta ) -858762X_2^{(3+\delta )/2}\beta _2\delta \ln (\frac{3}{\sqrt{X_2}})\nonumber \\&\qquad+127224X_2^{(3+\delta )/2}\beta _2\delta ^2\ln (\frac{3}{\sqrt{X_2}})(1+\delta )-373977X_2^{(3+\delta )/2}\beta _2\delta \ln (\frac{3}{\sqrt{X_2}})^2 +55404X_2^{(3+\delta )/2}\beta _2\delta ^2\ln (\frac{3}{\sqrt{X_2}})^2(1+\delta ). \end{aligned}$$
(62)

The term \(\Pi _1\) present in Eq. (44) is defined by the relation:

$$\begin{aligned} \Pi _1 & = 413\times 2^{\frac{1+8\delta }{3}}\times 3^{\frac{1+2\delta }{3}}X_1-3835\times 2^{1+\frac{8\delta }{3}}\times 3^{\frac{2\delta }{3}}X_1^{5/3} +17472\times 6^{1/3}(-1)^{-2\delta }{a_0}^{4-2\delta }B{X_1}^{\delta /3}\nonumber \\&\qquad -7\times 2^{\frac{7+8\delta }{3}}\times 3^{\frac{7+2\delta }{3}}\delta +65\times 2^{3+\frac{8\delta }{3}}\times 3^{2+\frac{2\delta }{3}} X_1^{5/3}\delta +7\times 2^{\frac{7+8\delta }{3}}\times 3^{\frac{1+2\delta }{3}}\delta ^2-65\times 2^{3+\frac{8\delta }{3}}\times 3^{2\delta /3}X_1^{5/3}\delta ^2. \end{aligned}$$
(63)

The term \(\Xi \) present in Eq. (47) is given by

$$\begin{aligned} \Xi & = \left( 53\times 2^{2+2\delta }\times 3^{3+\delta }X_2^{3/2}+5035\times \times 2^{4+2\delta }\times 3^{\delta } X_2^{5/2}+73872(-1)^{-2\delta }a_0^{4-2\delta }BX_2^{\delta /2}\right. \nonumber \\&\qquad -\left. 197\times 2^{2\delta }\times 3^{3+\delta }X_2^{3/2}\delta -18715\times 2^{2+2\delta } \times 3^{\delta }X_2{5/2}\delta +13\times 2^{2+2\delta }3^{3+\delta }X_2^{3/2}\delta ^2+1235\times 2^{4+2\delta }3^{\delta }X_2^{5/2}\delta ^2\right. \nonumber \\& \qquad -\left. 2^{2+2\delta }\times 3^{3+\delta }X_2^{3/2}\delta ^3-95\times 2^{4+2\delta }\times 3^{\delta }X_2^{5/2}\delta ^3\right) \left( (-3+2\sqrt{7})(-1+2\sqrt{7})(1+2\sqrt{7})(3+2\sqrt{7})\right. \nonumber \\& \qquad\times \left. X_2(9+2\sqrt{7}-2\delta )(-4+\delta )(-9+2\sqrt{7}+2\delta )\right) ^{-1} \end{aligned}$$
(64)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, S., Zubair, M., Shafiq, I. et al. Tsallis HDE-based reconstruction via correspondence scheme in a generalized torsion scalar theory. Eur. Phys. J. Plus 137, 1108 (2022). https://doi.org/10.1140/epjp/s13360-022-03321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03321-2

Navigation