Skip to main content
Log in

MGD solution under Class I generator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present an anisotropic solution of Einstein field equations through the minimally deformed Class I generator. To do this, first we apply the MGD approach under the transformation \(Y\longrightarrow H(r)+\alpha \,{\varPsi }(r)\) in the original field equations, which leads to two sets of equations. Later on, we employ this said transformation into differential equation corresponding to the Class I condition. In this way, we achieve a first-order nonlinear differential equation in \({\varPsi }(r)\) (called a generating equation) that depends on the gravitational potentials X(r) and Y(r). So, we assume two different well-behaved ansatzes for X(r) and obtained Y(r) using the Class I condition. There after, we solved this generating equation analytically by using these gravitational potentials and obtained the deformation function \({\varPsi }(r)\). The function \({\varPsi }(r)\) vanishes at \(r=0\) and is decreasing monotonically outward. The constant parameters involved in solutions are obtained by using well-known Schwarzschild exterior solution. Finally, we have discussed several mathematical and physical analysis of the solutions via graphical representation. The results have been also parented in tabular forms. The physical analysis confirms that our anisotropic solutions describe the realistic stellar models and may be useful in modeling of the astrophysical compact objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. since the effective mass and total mass are same when we use either pure anisotropic or perfect fluid matter distributions, which can be obtained from the formula: \(M_0=[M_0]_{\text {eff}}=4\pi \,\int ^R_0{x^2\,\rho (x)\,dx}\).

References

  1. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 91, 456 (1931)

    Article  ADS  Google Scholar 

  2. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  3. G. Fodor, arXiv:gr-qc/0011040.(2000)

  4. J.H. Jeans, Mon. Not. R. Astron. Soc. 82, 122 (1922)

    Article  ADS  Google Scholar 

  5. G. Lemaitre, Ann. Soc. Sci. Bruxelles A 53, 51 (1933)

    Google Scholar 

  6. R. Ruderman, Rev. Astr. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  7. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  8. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.M. Chaisi, S.D. Maharaj, Gen. Relativ. Gravit. 37, 1177 (2005)

    Article  ADS  Google Scholar 

  10. T. Harko, M.K. Mak, Class. Quantum Gravit. 21, 1489 (2004)

    Article  ADS  Google Scholar 

  11. T. Harko, M.K. Mak, Ann. Phys. (Amsterdam) 11, 3 (2002)

    ADS  Google Scholar 

  12. T. Harko, M.K. Mak, J. Math. Phys. (N. Y.) 43, 4889 (2002)

    Article  ADS  Google Scholar 

  13. T. Harko, M.K. Mak, Chin. J. Astron. Astrophys. 2, 248 (2002)

    Article  ADS  Google Scholar 

  14. M.K. Mak, N. Dobson Jr., T. Harko, Int. J. Mod. Phys. D 11, 207 (2002)

    Article  ADS  Google Scholar 

  15. L. Herrera, A.D.I. Prisco, J. Ospino, E. Fuenmayor, J. Math. Phys. (N.Y.) 42, 2129 (2001)

    Article  ADS  Google Scholar 

  16. L. Herrera, A.D.I. Prisco, J. Martin, J. Ospino, N.O. Santos, O. Troconis, Phys. Rev. D 69, 084026 (2004)

    Article  ADS  Google Scholar 

  17. L. Herrera, W. Barreto, Phys. Rev. D 88, 084022 (2013)

    Article  ADS  Google Scholar 

  18. S.K. Maurya, Y.K. Gupta, S. Ray, B. Dayanandan, Eur. Phys. J. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  19. S.K. Maurya et al., Phys. Rev. D 99, 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.K. Maurya et al., Gen. Relativ. Gravit. 51, 86 (2019)

    Article  ADS  Google Scholar 

  21. K.R. Karmarkar, Proc. Indian. Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  22. K.N. Singh, N. Pant, M. Govender, Eur. Phys. J. C 77, 100 (2017)

    Article  ADS  Google Scholar 

  23. K.N. Singh, N. Pant, M. Govender, Chin. Phys. C 41, 015103 (2017)

    Article  ADS  Google Scholar 

  24. P. Bhar et al., Eur. Phys. J. A 52, 191 (2016)

    Article  Google Scholar 

  25. S.K. Maurya, M. Govender, Eur. Phys. J. C 77, 347 (2017)

    Article  ADS  Google Scholar 

  26. S.K. Maurya, Eur. Phys. J. C 79, 958 (2019)

    Article  ADS  Google Scholar 

  27. F. Tello-Ortiz et al., Eur. Phys. J. C 79, 885 (2019)

    Article  ADS  Google Scholar 

  28. S.K. Maurya, A. Errehymy, D. Deb, F. Tello-Ortiz, M. Daoud, Phys. Rev. D 100, 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. S.K. Maurya, A. Banerjee, Y.K. Gupta, Astrophys. Space Sci. 363, 208 (2018)

    Article  ADS  Google Scholar 

  30. G. Mustafa et al., Phys. Dark Univ. 30, 100652 (2020)

    Article  Google Scholar 

  31. S.K. Maurya et al., Eur. Phys. J. Plus 135, 824 (2020)

    Article  Google Scholar 

  32. G. Mustafa, X. Tie-Cheng, M.F. Shamir, M. Javed, Eur. Phys. J. Plus 136, 166 (2021)

    Article  Google Scholar 

  33. G. Mustafa et al., Phys. Dark Univ. 31, 100747 (2021)

    Article  Google Scholar 

  34. G. Mustafa et al., Chin. J. Phys. 67, 576 (2020)

    Article  Google Scholar 

  35. G. Mustafa, T.C. Xia, Int. J. of Mod. Phys. A 35, 2050109 (2020)

    Article  ADS  Google Scholar 

  36. J. Ovalle, Phys. Rev. D 95, 104019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Ovalle, Phys. Lett. B 788, 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78, 122 (2018)

    Article  ADS  Google Scholar 

  39. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 558 (2018)

    Article  ADS  Google Scholar 

  40. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 618 (2018)

    Article  ADS  Google Scholar 

  41. S.K. Maurya, K.N. Singh, B. Dayanandan, Eur. Phys. J. C 80, 448 (2020)

    Article  ADS  Google Scholar 

  42. J. Ovalle et al., Europhys. Lett. 124, 20004 (2018)

    Article  ADS  Google Scholar 

  43. J. Ovalle et al., Class. Quantum Gravit. 36, 205010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. J. Ovalle, R. Casadio, E. Contreras, A. Sotomayor, Phys. Dark Univ. 31, 100744 (2021)

    Article  Google Scholar 

  45. J. Ovalle, R. Casadio, A Generalization of the Minimal Geometric Deformation, In: Beyond Einstein Gravity (SpringerBriefs in Physics, Springer, Cham.), https://doi.org/10.1007/978-3-030-39493-6_4 (2020)

  46. J. Ovalle, R. Casadio, A. Sotomayor, Adv. High Energy Phys. https://doi.org/10.1155/2017/9756914 (2017)

  47. J. Ovalle, L.A. Gergely, R. Casadio, Class. Quantum Gravit. 32, 045015 (2015)

    Article  ADS  Google Scholar 

  48. J. Ovalle, A. Sotomayor, Eur. Phys. J. Plus 133, 428 (2018)

    Article  Google Scholar 

  49. J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013)

    Article  ADS  Google Scholar 

  50. J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quantum Gravit. 30, 175019 (2013)

    Article  ADS  Google Scholar 

  51. E. Contreras, Eur. Phys. J. C 78, 678 (2018)

    Article  ADS  Google Scholar 

  52. E. Contreras, Class. Quantum Gravit. 36, 095004 (2019)

    Article  ADS  Google Scholar 

  53. E. Contreras, P. Bargueśo, Class. Quantum Grav. 36, 215009 (2019)

    Article  ADS  Google Scholar 

  54. R. Casadio et al., Eur. Phys. J. C 79, 826 (2019)

    Article  ADS  Google Scholar 

  55. R. Casadio, J. Ovalle, R. Da, Rocha. Class. Quantum Gravit. 32, 215020 (2015)

    Article  ADS  Google Scholar 

  56. R. Casadio, J. Ovalle, R. Da, Rocha. Class. Quantum Gravit. 31, 045016 (2015)

    Article  ADS  Google Scholar 

  57. R. Casadio, J. Ovalle, Gen. Reletiv. Gravit. 46, 1669 (2014)

    Article  ADS  Google Scholar 

  58. R. Casadio, J. Ovalle, R. Da, Rocha. Europhys. Lett. 110, 40003 (2015)

    Article  ADS  Google Scholar 

  59. F. Tello-Ortiz, Eur. Phys. J. C 80, 413 (2020)

    Article  ADS  Google Scholar 

  60. E. Contreras, J. Ovalle, R. Casadio, Phys. Rev. D 103, 044020 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  61. F. Tello-Ortiz, S.K. Maurya, Y. Gomez-Leyton, Eur. Phys. J. C 80, 324 (2020)

    Article  ADS  Google Scholar 

  62. K.N. Singh, S.K. Maurya, M.K. Jasim, F. Rahaman, Eur. Phys. J. C 79, 851 (2019)

    Article  ADS  Google Scholar 

  63. S.K. Maurya, F. Tello-Ortiz, M.K. Jasim, Eur. Phys. J. C 80, 918 (2020)

    Article  ADS  Google Scholar 

  64. S.K. Maurya, Eur. Phys. J. C 80, 429 (2020)

    Article  ADS  Google Scholar 

  65. R. da Rocha, Symmetry 12, 508 (2020)

    Article  Google Scholar 

  66. S.K. Maurya et al., Physics of the Dark Universe 30, 100640 (2020)

    Article  Google Scholar 

  67. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 841 (2018)

    Article  ADS  Google Scholar 

  68. S.K. Maury, F. Tello-Ortiz, Physics of the Dark Universe 29, 100577 (2020)

    Article  Google Scholar 

  69. M. Estrada, F. Tello-Ortiz, Eur. Phys. J. plus 133, 453 (2018)

    Article  Google Scholar 

  70. J. Eiesland, Trans. Am. Math. Soc. 27, 213 (1925)

    Article  MathSciNet  Google Scholar 

  71. L.P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, NJ, 1925), p. 97

    Google Scholar 

  72. S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1981)

    Article  ADS  Google Scholar 

  73. M.H. Murad, Eur. Phys. J. C 78, 285 (2018)

    Article  ADS  Google Scholar 

  74. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  75. K. Lake, Phys. Rev. Lett. 92, 051101 (2004)

    Article  ADS  Google Scholar 

  76. L. Herrera, J. Ospino, A. Di, Parisco. Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  77. S.K. Maurya, Y.K. Gupta, S. Ray, Eur. Phys. J. C 77, 360 (2017)

    Article  ADS  Google Scholar 

  78. T.W. Baumgarte, A.D. Rendall, Class. Quantum Gravit. 10, 327 (1993)

    Article  ADS  Google Scholar 

  79. M. Mars, M. Merc Martn-Prats, Phys. Lett. A 218, 147 (1996)

    Article  ADS  Google Scholar 

  80. F. Tello-Ortiz et al., Eur. Phys. J. C 80, 324 (2020)

    Article  ADS  Google Scholar 

  81. K. Schwarzschild, Sitz Deut Akad Wiss Berlin. Kl. Math. Phys. 24, 424 (1916)

    Google Scholar 

  82. W. Israel, Nuovo Cim. B 44, 1 (1966)

    Article  ADS  Google Scholar 

  83. G. Darmois, Mémorial des Sciences Mathematiques (Gauthier-Villars, Paris, Fasc. 25, 1927)

  84. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  85. M.C. Durgapal, R.S. Fuloria, Gen. Relativ. Gravit. 17, 671 (1985)

    Article  ADS  Google Scholar 

  86. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  87. H. Bondi, Mon. Not. R. Astron. Soc. 259, 365 (1992)

    Article  ADS  Google Scholar 

  88. R. Chan, L. Herrera, N.O. Santos, Class. Quantum Gravit. 9, 133 (1992)

    Article  ADS  Google Scholar 

  89. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  90. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  91. S. Chandrasekhar, Phys. Rev. Lett. 12, 1143 (1964)

    Article  Google Scholar 

  92. ChC Moustakidis, Gen. Relativ. Gravit. 49, 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  93. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  94. M.L. Rawls et al., ApJ 730, 25 (2011)

    Article  ADS  Google Scholar 

  95. P.C.C. Freire et al., MNRAS 412, 2763 (2011)

    Article  ADS  Google Scholar 

  96. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  97. C. Arias, F. Tello-Ortiz, E. Contreras, Eur. Phys. J. C 80, 463 (2020)

    Article  ADS  Google Scholar 

  98. N. Straumann, General Relativity and Relativistic Astrophysics (Springer, Berlin, 1984)

    Book  Google Scholar 

  99. S. Karmakar, S. Mukherjee, R. Sharma, S.D. Maharaj, Pramana 68, 881 (2007)

    Article  ADS  Google Scholar 

  100. C.G. Boehmer, T. Harko, Class. Quant. Gravit. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  101. D.E. Barraco, V.H. Hamity, R.J. Gleiser, Phys. Rev. D 67, 064003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  102. B.V. Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  103. J.D.V. Arbanil, J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 89, 104054 (2014)

    Article  ADS  Google Scholar 

  104. M. Dey, I. Bombacci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  105. K.S. Cheng, T. Harko, Phys. Rev. D 62, 083001 (2000)

    Article  ADS  Google Scholar 

  106. D. Gondek-Rosinska et al., A&A 363, 1005 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

S. K. Maurya and Riju Nag acknowledge that this work is carried out under TRC project-BFP/RGP/CBS/19/099 of the Sultanate of Oman. The authors also acknowledge for continuing support and encouragement from the administration of University of Nizwa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maurya.

Appendix

Appendix

$$\begin{aligned} \phi _{11}(r)= & {} 8 \cos ^3(A r^2) [-8 (4 A r^2 \sin (A r^2)\\&+\cos (A r^2)) (-128 A^2 C F^2 r^4+2 A b F r^4+56 C \cos (2 A r^2)\\&+28 C \cos (4 A r^2)+8 C \cos (6 A r^2)+C \cos (8 A r^2)+35 C)\\&-\cos (A r^2) (8 A F r^2+4 \cos (2 A r^2)\\&+\cos (4 A r^2)+3) (64 A C F r^2+32 C \cos (2 A r^2)+8 C \cos (4 A r^2)-b r^2+24 C)],\\ \phi _{12}(r)= & {} (8 A F r^2+4 \cos (2 A r^2)+\cos (4 A r^2)+3)^2 [64 A C F r^2+32 C \cos (2 A r^2)\\&+8 C \cos (4 A r^2)-b r^2+24 C]^2,\\ \phi _{13}(r)= & {} (8 A F r^2+4 \cos (2 A r^2)+\cos (4 A r^2)+3)\,[64 A C F r^2+32 C \cos (2 A r^2)\\&+8 C \cos (4 A r^2)-b r^2+24 C],\\ \phi _{14}(r)= & {} 16 \cos (A r^2) [(4 A r^2 \sin (A r^2)+\cos (A r^2)) (4 A r^2+\sin (2 A r^2)\\&+\cos (2 A r^2)+1) (2 A b F r^4-128 A^2 C F^2 r^4\\&+56 C \cos (2 A r^2)+28 C \cos (4 A r^2)+8 C \cos (6 A r^2)\\&+C \cos (8 A r^2)+35 C)+2 A r^2 (8 A F r^2+4 \cos (2 A r^2)\\&+\cos (4 A r^2)+3) (2 A r^2 \sin (A r^2)\\&+\cos (A r^2)) (64 A C F r^2+32 C \cos (2 A r^2)\\&+8 C \cos (4 A r^2)-b r^2+24 C)],\\ \phi _{15}(r)= & {} [\tan (A r^2)+1]\, [8 A F r^2+4 \cos (2 A r^2)\\&+\cos (4 A r^2)+3]^2 [64 A C F r^2+32 C \cos (2 A r^2)+8 C \cos (4 A r^2)\\&-b r^2+24 C]^2.\\ \phi _{21}= & {} 8 \cosh ^3(A r^2) \{8 (4 A r^2 \sinh (A r^2)\\&-\cosh (A r^2)) [2 A b F r^4-128 A^2 C F^2 r^4+56 C \cosh (2 A r^2)\\&+28 C\cosh (4 A r^2)+8 C \cosh (6 A r^2)+C \cosh (8 A r^2)+35 C]\\&-\cosh (A r^2) [8 A F r^2+4 \cosh (2 A r^2)\\&+\cosh (4 A r^2)+3] [64 A C F r^2+32 C \cosh (2 A r^2)\\&+8 C \cosh (4 A r^2)-b r^2+24 C]\},\\ \phi _{22}= & {} (8 A F r^2+4 \cosh (2 A r^2)+\cosh (4 A r^2)+3)^2 [64 A C F r^2\\&+32 C \cosh (2 A r^2)+8 C \cosh (4 A r^2)\\&-b r^2+24 C]^2 \\ \phi _{23}= & {} (8 A F r^2+4 \cosh (2 A r^2)+\cosh (4 A r^2)+3) (64 A C F r^2+32 C \cosh (2 A r^2)\\&+8 C \cosh (4 A r^2)-b r^2+24 C)\\ \phi _{24}= & {} 4 \{-8 r \cosh (A r^2) [\sinh (A r^2)\\&+\cosh (A r^2)] [4 A r^2 \sinh (A r^2)\\&-\cosh (A r^2)] [(2 A r^2+1) \cosh (A r^2)\\&-2 A r^2 \sinh (A r^2)] (-128 A^2 C F^2 r^4+2 A b F r^4+56 C \cosh (2 A r^2)\\&+28 C \cosh (4 A r^2)+8 C \cosh (6 A r^2)\\&+C \cosh (8 A r^2)+35 C)-8 A r^3 \cosh ^2(A r^2) (2 A r^2 \tanh (A r^2)-1) (8 A F r^2\\&+4 \cosh (2 A r^2)+\cosh (4 A r^2)\\&+3) (64 A C F r^2+32 C \cosh (2 A r^2)+8 C \cosh (4 A r^2)-b r^2+24 C)\},\\ \phi _{25}= & {} r (\tanh (A r^2)+1) [8 A F r^2+4 \cosh (2 A r^2)+\cosh (4 A r^2)+3]^2 [64 A C F r^2\\&+32 C \cosh (2 A r^2)+8 C \cosh (4 A r^2)\\&-b r^2+24 C]^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Nag, R. MGD solution under Class I generator. Eur. Phys. J. Plus 136, 679 (2021). https://doi.org/10.1140/epjp/s13360-021-01645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01645-z

Navigation