Abstract.

The purpose of this paper is to analyze a mixed method for the linear elasticity eigenvalue problem, which approximates numerically the stress, displacement, and rotation, by piecewise \((k+1)\), \(k\), and \((k+1)\)th degree polynomial functions (\(k\geq 1\)), respectively. The numerical eigenfunction of stress is symmetric. By the discrete \(H^1\)-stability of numerical displacement, we prove an \(O(h^{k+2})\) approximation to the \(L^{2}\)-orthogonal projection of the eigenspace of exact displacement for the eigenvalue problem with a proper regularity assumption. Thus via postprocessing, we obtain a better approximation to the eigenspace of exact displacement for the eigenproblem than conventional methods. We also prove that numerical approximation to the eigenfunction of stress is locking free with respect to the Poisson ratio. We introduce a hybridization to reduce the mixed method to a condensed eigenproblem and prove an \(O(h^2)\) initial approximation (independent of the inverse of the elasticity operator) of the eigenvalue for the nonlinear eigenproblem by using the discrete \(H^1\)-stability of numerical displacement, while only an \(O(h)\) approximation can be obtained if we use the traditional inf-sup condition. Finally, we report some numerical experiments.

Keywords

  1. linear elasticity
  2. eigenvalue problem
  3. mixed methods
  4. error estimates

MSC codes

  1. 65N12
  2. 65N15
  3. 65N30
  4. 74B05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
T. Arbogast and J. L. Bona, Methods of Applied Mathematics, Department of Mathematics, University of Texas, Austin, Texas, 2008.
2.
D. Arnold, R. Falk, and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp., 76 (2007), pp. 1699–1723.
3.
D. N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations 7, IMACS Secretariat, New Brunswick, NJ, 1992, pp. 28–34.
4.
F. Bertrand and D. Boffi, Least-squares formulations for eigenvalue problems associated with linear elasticity, Comput. Math. Appl., 95 (2021), pp. 19–27.
5.
F. Bertrand, D. Boffi, and R. Ma, An adaptive finite element scheme for the Hellinger-Reissner elasticity mixed eigenvalue problem, Comput. Methods Appl. Math., 21 (2021), pp. 501–512.
6.
D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Berlin, 2013.
7.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991.
8.
L. Chen, ifem: An Innovative Finite Element Methods Package in Matlab, Technical report, University of California, Irvine, CA, 2008.
9.
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Appl. Math. 130, SIAM, Philadelphia, 2013.
10.
B. Cockburn, J. Gopalakrishnan, and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry, Math. Comp., 79 (2010), pp. 1331–1349.
11.
B. Cockburn, J. Gopalakrishnan, F. Li, N.-C. Nguyen, and J. Peraire, Hybridization and postprocessing techniques for mixed eigenfunctions, SIAM J. Numer. Anal., 48 (2010), pp. 857–881.
12.
M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Math. 1341, Springer, Berlin, 2006.
13.
A. Dello Russo, Eigenvalue approximation by mixed non-conforming finite element methods: The determination of the vibrational modes of a linear elastic solid, Calcolo, 51 (2014), pp. 563–597.
14.
D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Paris) 69, Springer, Heidelberg, Germany, 2011.
15.
H. Gao and W. Qiu, Error analysis of mixed finite element methods for nonlinear parabolic equations, J. Sci. Comput., 77 (2018), pp. 1660–1678.
16.
G. N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing \(\mathbb{RT}_0-\mathbb{P}_1-\mathbb{P}_0\) approximations, ESAIM Math. Model. Numer. Anal., 40 (2006), pp. 1–28.
17.
J. Gedicke and A. Khan, Arnold-Winther mixed finite elements for Stokes eigenvalue problems, SIAM J. Sci. Comput., 40 (2018), pp. A3449–A3469.
18.
J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble, IMA J. Numer. Anal., 32 (2012), pp. 352–372.
19.
J. Gopalakrishnan and W. Qiu, Partial expansion of a Lipschitz domain and some applications, Front. Math. China, 7 (2012), pp. 249–272.
20.
P. Grisvard, Singularités des problèmes aux limites dans des polyèdres, in Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi” Séminaire Goulaouic-Schwartz,” École Polytechnique, Paris, 1982, pp. 1–19.
21.
R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer., 11 (2002), pp. 237–339.
22.
D. Inzunza, F. Lepe, and G. Rivera, Displacement-pseudostress formulation for the linear elasticity spectral problem, Numer. Methods Partial Differential Equations, 39 (2023), pp. 1996–2017.
23.
T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), pp. 261–322.
24.
F. Lepe, S. Meddahi, D. Mora, and R. Rodríguez, Mixed discontinuous Galerkin approximation of the elasticity eigenproblem, Numer. Math., 142 (2019), pp. 749–786.
25.
F. Lepe and D. Mora, Symmetric and nonsymmetric discontinuous Galerkin methods for a pseudostress formulation of the Stokes spectral problem, SIAM J. Sci. Comput., 42 (2020), pp. A698–A722.
26.
F. Lepe and G. Rivera, A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem, Comput. Methods Appl. Mech. Engrg., 379 (2021), 113753.
27.
S. Meddahi, A DG method for a stress formulation of the elasticity eigenproblem with strongly imposed symmetry, Comput. Math. Appl., 135 (2023), pp. 19–30.
28.
S. Meddahi, Variational eigenvalue approximation of non-coercive operators with application to mixed formulations in elasticity, SeMA J., 79 (2022), pp. 139–164.
29.
S. Meddahi and D. Mora, Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), pp. 269–287.
30.
S. Meddahi, D. Mora, and R. Rodríguez, Finite element spectral analysis for the mixed formulation of the elasticity equations, SIAM J. Numer. Anal., 51 (2013), pp. 1041–1063.
31.
S. Meddahi, D. Mora, and R. Rodríguez, Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem, Comput. Math. Appl., 68 (2014), pp. 1733–1750.
32.
S. Meddahi, D. Mora, and R. Rodríguez, A finite element analysis of a pseudostress formulation for the Stokes eigenvalue problem, IMA J. Numer. Anal., 35 (2015), pp. 749–766.
33.
B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp., 36 (1981), pp. 427–453.
34.
J. E. Osborn, Spectral approximation for compact operators, Math. Comp., 29 (1975), pp. 712–725.
35.
R. Schnaubelt, Lecture Notes Spectral Theory, Karlsruhe Institut für Technologie, Karlsruhe, Germany, 2012).
36.
R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math., 53 (1988), pp. 513–538.
37.
S. Zhang, A new family of stable mixed finite elements for the 3d Stokes equations, Math. Comp., 74 (2005), pp. 543–554.
38.
X. Zhang, Y. Zhang, and Y. Yang, Guaranteed lower bounds for the elastic eigenvalues by using the nonconforming Crouzeix-Raviart finite element, Mathematics, 8 (2020), p. 1252.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1885 - 1917
ISSN (online): 1095-7170

History

Submitted: 23 March 2022
Accepted: 27 March 2023
Published online: 26 July 2023

Keywords

  1. linear elasticity
  2. eigenvalue problem
  3. mixed methods
  4. error estimates

MSC codes

  1. 65N12
  2. 65N15
  3. 65N30
  4. 74B05

Authors

Affiliations

Xiang Zhong
Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
Weifeng Qiu Contact the author
Corresponding author. Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.

Funding Information

Funding: The work of the authors was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China project CityU 11302219.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.