Skip to main content
Log in

Ultra-Sensitive Magnetoelectric Sensors of Magnetic Fields for Biomedical Applications

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract—

Composite multiferroics are materials in which electric polarization of the material is possible under the action of an external magnetic field and vice versa, a change in the magnetization of the structure when an electric field is applied. Such properties have a high practical potential for application in science and technology. Based on these materials, it is possible to manufacture a number of devices with unique properties, such as, for example, random access magnetoelectric (ME) memory, ME sensors of magnetic fields, current, magnetic nanoparticles, micromechanical ME antennas, voltage-adjustable microwave filters, resonators and phase shifters. Therefore, the search for new materials of composite multiferroics and the study of the ME effect in them is a priority and urgent task in the search and creation of new electronic devices. One of the most promising and close to practical implementation directions is the creation of highly sensitive sensors of ultra-weak magnetic fields on the basis of composite multiferroics. The absence of the need to cool such sensors is a significant technical advantage over superconducting quantum interferometers currently used for these purposes. To date, the best achieved limits for detecting magnetic fields using sensors based on composite magnetoelectrics are values of the order of pT/Hz1/2, and new works are regularly published that reduce this threshold by improving processing electronics and changing the sensor design. This threshold of sensitivity is already sufficient for reliable detection of magnetic fields induced by alpha-rhythm currents of the brain with amplitudes of units of pT (magnetoencephalography) and for detecting the magnetic activity of the human heart. The review article is devoted to composite magnetoelectric structures with a focus on sensor structures capable of detecting ultra-weak magnetic fields. The comparison of the limiting sensitivity to the magnetic field of the existing ME composite structures is carried out, the ways of increasing the sensitivity to the magnetic field are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.

Similar content being viewed by others

REFERENCES

  1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London, U.K.) 442 (7104), 759 (2006).

    Article  CAS  Google Scholar 

  2. M. Fiebig, J. Phys. D 38 (8), R123 (2005).

    Article  CAS  Google Scholar 

  3. M. M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015).

    Article  CAS  Google Scholar 

  4. C.-W. Nan, M. I. Bichurin, S. Dong, et al., J. Appl. Phys. 103, 31101 (2008).

    Article  CAS  Google Scholar 

  5. M. Bichurin, D. Viehland, and G. Srinivasan, J. Electroceram. 19, 243 (2007).

    Article  CAS  Google Scholar 

  6. C. Tu, Z.-Q. Chu, B. Spetzler, et al., Materials (Basel) 12, 2259 (2019).

    Article  CAS  Google Scholar 

  7. H. Palneedi, V. Annapureddy, S. Priya, et al., Actuators 5, 9 (2016).

    Article  Google Scholar 

  8. J. Ma, J. Hu, Z. Li, et al., Adv. Mater. 23, 1062 (2011).

    Article  CAS  Google Scholar 

  9. G. Srinivasan, Ann. Rev. Mater. Res. 40, 153 (2010).

    Article  CAS  Google Scholar 

  10. V. Röbisch, S. Salzer, N. O. Urs, et al., J. Mater. Res. 32, 1009 (2017).

    Article  CAS  Google Scholar 

  11. J. Reermann, P. Durdaut, S. Salzer, et al., Measurement 116, 230 (2018).

    Article  Google Scholar 

  12. H. Lin, M. R. Page, M. McConney, et al., MRS Bull. 43, 841 (2018).

    Article  CAS  Google Scholar 

  13. K. Sternickel and A. I. Braginski, Supercond. Sci. Technol. 19, S160 (2006).

    Article  CAS  Google Scholar 

  14. S. Salzer, V. Röbisch, M. Klug, et al., IEEE Sens. J. 18, 596 (2018).

    Article  CAS  Google Scholar 

  15. V. Annapureddy, H. Palneedi, W.-H. Yoon, et al., Sens. Actuators, A 260, 206 (2017).

    Article  CAS  Google Scholar 

  16. J. Reermann, E. Elzenheimer, G. Schmidt, IEEE Sens. J., 1 (2019).

  17. Z. Xing, J. Zhai, J. Li, et al., J. Appl. Phys. 106, 24512 (2009).

    Article  CAS  Google Scholar 

  18. A. A. Timopheev, J. V. Vidal, A. L. Kholkin, et al., J. Appl. Phys. 114, 44102 (2013).

    Article  CAS  Google Scholar 

  19. J. V. Vidal, A. A. Timopheev, A. L. Kholkin, et al., Vacuum 122, 286 (2015).

    Article  CAS  Google Scholar 

  20. A. S. Bykov, S. G. Grigoryan, R. N. Zhukov, D. A. Kiselev, S. V. Ksenich, I.V. Kubasov, M. D. Malinkovich, and Yu. N. Parkhomenko, Russ. Microelectron. 43, 536 (2014).

    Article  CAS  Google Scholar 

  21. Z. P. Xing, J. Y. Zhai, S. X. Dong, et al., Meas. Sci. Technol. 19, 15206 (2008).

    Article  CAS  Google Scholar 

  22. R. Jahns, H. Greve, E. Woltermann, et al., IEEE Trans. Instrum. Meas. 60, 2995 (2011).

    Article  Google Scholar 

  23. X. Zhuang, C. Cordier, S. Saez, et al., J. Appl. Phys. 109, 124512 (2011).

    Article  CAS  Google Scholar 

  24. R. Jahns, H. Greve, E. Woltermann, et al., Sens. Actuators, A 183, 16 (2012).

    Article  CAS  Google Scholar 

  25. J. R. Petrie, J. Fine, S. Mandal, et al., Appl. Phys. Lett. 99, 043504 (2011).

    Article  CAS  Google Scholar 

  26. L. Y. Fetisov, N. S. Perov, Y. K. Fetisov, et al., J. Appl. Phys. 109, 53908 (2011).

    Article  CAS  Google Scholar 

  27. Y. Zhang, G. Liu, M. Li, et al., J. Alloys Compd. 641, 188 (2015).

    Article  CAS  Google Scholar 

  28. Y. K. Fetisov, D. V. Chashin, A. G. Segalla, et al., J. Appl. Phys. 110, 066101 (2011).

    Article  CAS  Google Scholar 

  29. V. M. Petrov, M. I. Bichurin, K. V. Lavrentyeva, et al., J. Electron. Mater. 45, 4197 (2016).

    Article  CAS  Google Scholar 

  30. J. Zhai, Z. Xing, S. Dong, et al., Appl. Phys. Lett. 88, 62510 (2006).

    Article  CAS  Google Scholar 

  31. Y. J. Wang, J. Q. Gao, M. H. Li, et al., Phil. Trans. R. Soc. London, Ser. A 372, 20120455 (2014).

    CAS  Google Scholar 

  32. J. Gao, J. Das, Z. Xing, et al., J. Appl. Phys. 108, 84509 (2010).

    Article  CAS  Google Scholar 

  33. I. V. Kubasov, M. S. Timshina, D. A. Kiselev, M. D. Malinkovich, A. S. Bykov, and Yu. N. Parkhomenko, Crystallogr. Rep. 60, 700 (2015).

    Article  CAS  Google Scholar 

  34. I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, M. D. Malinkovich, and Yu. N. Parkhomenko, Russ. Microelectron. 50, 571 (2021).

    Article  CAS  Google Scholar 

  35. P. Debye, Z. Phys. 36, 300 (1926).

    Article  Google Scholar 

  36. Y. Wang, J. Hu, Y. Lin, et al., NPG Asia Mater. 2 (2), 61 (2010).

    Article  Google Scholar 

  37. D. C. Lupascu, H. Wende, M. Etier, et al., GAMM-Mitt. 38, 25 (2015).

    Article  Google Scholar 

  38. J. Ryu, S. Priya, K. Uchino, et al., J. Electroceram. 8, 107 (2002).

    Article  CAS  Google Scholar 

  39. C.-W. Nan, Phys. Rev. B 50, 6082 (1994).

    Article  CAS  Google Scholar 

  40. W. Kleemann, J. Phys. D 50, 223001 (2017).

    Article  CAS  Google Scholar 

  41. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. 13, 525 (1978).

    Article  CAS  Google Scholar 

  42. R. E. Newnham, Ferroelectrics 68 (1), 1 (1986).

    Article  CAS  Google Scholar 

  43. T. Xu, C. A. Wang, and C. Wang, Ceram. Int. 41, 11080 (2015).

    Article  CAS  Google Scholar 

  44. I. V. Lisnevskaya, T. Lupeiko, and K. Myagkaya, J. Compos. Mater. 51, 507 (2017).

    Article  CAS  Google Scholar 

  45. A. Alyeksyei, N. Jiang, Y. Jiang, et al., Phys. Status Solidi RRL 13, 1800691 (2019).

    Article  CAS  Google Scholar 

  46. S. Dong, J.-F. Li, and D. Viehland, Appl. Phys. Lett. 83, 2265 (2003).

    Article  CAS  Google Scholar 

  47. X. Zhuang, M. L. C. Sing, C. Dolabdjian, et al., IEEE Sens. J. 15, 1575 (2015).

    Article  Google Scholar 

  48. M. Li, A. Matyushov, C. Dong, et al., Appl. Phys. Lett. 110, 143510 (2017).

    Article  CAS  Google Scholar 

  49. G. Sreenivasulu, P. Qu, V. Petrov, et al., Sensors 16, 262 (2016).

    Article  CAS  Google Scholar 

  50. M. I. Bichurin, V. M. Petrov, R. V. Petrov, et al., in High Sensitivity Magnetometers, Ed. by A. Grosz, M. J. Haji-Sheikh, and S. C. Mukhopadhyay (Springer Int., Cham, 2017), p. 127.

    Google Scholar 

  51. C. Lu, P. Li, Y. Wen, et al., IEEE Trans. Magn. 50 (11), 1 (2014).

    Google Scholar 

  52. C. M. Leung, S. W. Or, S. L. Ho, et al., IEEE Sens. J. 14, 4305 (2014).

    Article  Google Scholar 

  53. M. Bichurin, R. Petrov, V. Leontiev, et al., Sensors 17, 1271 (2017).

    Article  Google Scholar 

  54. M. Zhang and S. Or, Sensors 18, 588 (2018).

    Article  CAS  Google Scholar 

  55. C. M. Leung, X. Zhuang, J. Xu, et al., Appl. Phys. Lett. 110, 112904 (2017).

    Article  CAS  Google Scholar 

  56. J. Zhai, J. Gao, C. de Vreugd, et al., Eur. Phys. J. B 71, 383 (2009).

    Article  CAS  Google Scholar 

  57. X. Zhuang, C. M. Leung, G. Sreenivasulu, et al., Appl. Phys. Lett. 111, 163902 (2017).

    Article  CAS  Google Scholar 

  58. J. Zhang, W. Zhu, D. Chen, et al., J. Magn. Magn. Mater. 473, 131 (2019).

    Article  CAS  Google Scholar 

  59. J. Zhai, J. Li, S. Dong, et al., J. Appl. Phys. 100, 124509 (2006).

    Article  CAS  Google Scholar 

  60. C. M. Leung, X. Zhuang, J. Li, et al., J. Phys.: Conf. Ser. 1407, 012025 (2019).

    CAS  Google Scholar 

  61. S. Dong, J. Zhai, J. F. Li, et al., App. Phys. Lett. 93, 103511 (2008).

    Article  CAS  Google Scholar 

  62. G. Liu, P. Ci, and S. Dong, App. Phys. Lett. 104, 32908 (2014).

    Article  CAS  Google Scholar 

  63. J. Ryu, J.-E. Kang, Y. Zhou, et al., Energy Environ. Sci. 8, 2402 (2015).

    Article  CAS  Google Scholar 

  64. Z. Chu, V. Annapureddy, M. PourhosseiniAsl, et al., MRS Bull. 43, 199 (2018).

    Article  Google Scholar 

  65. W. Gao, R. Brennan, Y. Hu, et al., Mater. Today 21, 771 (2018).

    Article  CAS  Google Scholar 

  66. R.-M. Friedrich, S. Zabel, A. Galka, et al., Sci. Rep. 9, 2086 (2019).

    Article  CAS  Google Scholar 

  67. X. Xue, Z. Zhou, B. Peng, et al., Sci. Rep. 5, 16480 (2015).

    Article  CAS  Google Scholar 

  68. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys. Usp. 61, 1175 (2018)

    Article  CAS  Google Scholar 

  69. J. Lou, D. Reed, M. Liu, et al., Appl. Phys. Lett. 94, 112508 (2009).

    Article  CAS  Google Scholar 

  70. N. X. Sun and G. Srinivasan, Spin 02, 1240004 (2012).

    Article  CAS  Google Scholar 

  71. Y. Yan, L. D. Geng, Y. Tan, et al., Nat. Commun. 9, 4998 (2018).

    Article  CAS  Google Scholar 

  72. A. S. Tatarenko and M. I. Bichurin, Adv. Condens. Matter Phys. 2012, 1 (2012).

    Article  Google Scholar 

  73. M. I. Bichurin, I. A. Kornev, V. M. Petrov, et al., Phys. Rev. B 64, 94404 (2001).

    Article  CAS  Google Scholar 

  74. G.-M. Yang, J. Wu, J. Lou, et al., IEEE Trans. Magn. 49, 5063 (2013).

    Article  CAS  Google Scholar 

  75. T. Nan, H. Lin, Y. Gao, et al., Nat. Commun. 8, 296 (2017).

    Article  CAS  Google Scholar 

  76. J. Xu, C. Leung, X. Zhuang, et al., Sensors 19, 853 (2019).

    Article  CAS  Google Scholar 

  77. J. Lou, M. Liu, D. Reed, et al., Adv. Mater. 21, 4711 (2009).

    Article  CAS  Google Scholar 

  78. M. Liu, Z. Zhou, T. Nan, et al., Adv. Mater. 25, 1435 (2013).

    Article  CAS  Google Scholar 

  79. G. V. Duong, R. Groessinger, M. Schoenhart, et al., J. Magn. Magn. Mater. 316, 390 (2007).

    Article  CAS  Google Scholar 

  80. J. Lu, D.-A. Pan, B. Yang, et al., Meas. Sci. Technol. 19, 045702 (2008).

    Article  CAS  Google Scholar 

  81. J.-P. Rivera, Eur. Phys. J. B 71, 299 (2009).

    Article  CAS  Google Scholar 

  82. R. Jahns, A. Piorra, E. Lage, et al., J. Am. Ceram. Soc. 96, 1673 (2013).

    Article  CAS  Google Scholar 

  83. J. H. Scofield, Am. J. Phys. 62, 129 (1994).

    Article  Google Scholar 

  84. J. Zhai, S. Dong, Z. Xing, et al., Appl. Phys. Lett. 89, 83507 (2006).

    Article  CAS  Google Scholar 

  85. K.-H. Cho and S. Priya, Appl. Phys. Lett. 98, 232904 (2011).

    Article  CAS  Google Scholar 

  86. J. Zhai, Z. Xing, S. Dong, et al., J. Am. Ceram. Soc. 91, 351 (2008).

    Article  CAS  Google Scholar 

  87. S. Dong, J. Zhai, F. Bai, et al., Appl. Phys. Lett. 87, 62502 (2005).

    Article  CAS  Google Scholar 

  88. S. Dong, J. F. Li, D. Viehland, et al., Appl. Phys. Lett. 85, 3534 (2004).

    Article  CAS  Google Scholar 

  89. S. Dong, J. Zhai, and J. Li, Appl. Phys. Lett. 89, 252904 (2006).

    Article  CAS  Google Scholar 

  90. C. R. Bowen, R. Stevens, L. J. Nelson, et al., Smart Mater. Struct. 15, 295 (2006).

    Article  Google Scholar 

  91. S. Dong, J. Zhai, Z. Xing, et al., Appl. Phys. Lett. 91, 022915 (2007).

    Article  CAS  Google Scholar 

  92. Y. Wang, J. Gao, M. Li, et al., Appl. Phys. Lett. 101, 022903 (2012).

    Article  CAS  Google Scholar 

  93. G. Sreenivasulu, L. Y. Fetisov, and Y. K. Fetisov, Appl. Phys. Lett. 100, 52901 (2012).

    Article  CAS  Google Scholar 

  94. H. Greve, E. Woltermann, H.-J. Quenzer, et al., Appl. Phys. Lett. 96, 182501 (2010).

    Article  CAS  Google Scholar 

  95. H. Greve, E. Woltermann, R. Jahns, et al., Appl. Phys. Lett. 97, 152503 (2010).

    Article  CAS  Google Scholar 

  96. S. Trolier-McKinstry and P. Muralt, J. Electroceram. 12, 7 (2004).

    Article  CAS  Google Scholar 

  97. K. Krupa, M. Józwik, C. Gorecki, et al., Opt. Lasers Eng. 47, 211 (2009).

    Article  Google Scholar 

  98. A. A. Bent and N. W. Hagood, J. Intell. Mater. Syst. Struct. 8, 903 (1997).

    Article  Google Scholar 

  99. D. Murzin, D. J. Mapps, K. Levada, et al., Sensors 20, 1569 (2020).

    Article  CAS  Google Scholar 

  100. S. Zuo, J. Schmalz, M.-O. Ozden, et al., IEEE Trans. Biomed. Circuits Syst. 14, 971 (2020).

    Article  Google Scholar 

  101. Y. Liu, J. Jiao, J. Ma, et al., Appl. Phys. Lett. 103, 212902 (2013).

    Article  CAS  Google Scholar 

  102. J. Li and D. Viehland, J. Appl. Phys. 118, 214103 (2015).

    Article  CAS  Google Scholar 

  103. S. Salzer, R. Jahns, A. Piorra, et al., Sens. Actuators, A 237, 91 (2016).

    Article  CAS  Google Scholar 

  104. Y. Shen, K. L. McLaughlin, J. Gao, et al., Mater. Lett. 91, 307 (2013).

    Article  CAS  Google Scholar 

  105. A. Piorra, R. Jahns, I. Teliban, et al., Appl. Phys. Lett. 103, 32902 (2013).

    Article  CAS  Google Scholar 

  106. V. V. Antipov, A. S. Bykov, M. D. Malinkovich, et al., Ferroelectrics 374, 65 (2008).

    Article  CAS  Google Scholar 

  107. V. Y. Shur, I. S. Baturin, E. A. Mingaliev, et al., Appl. Phys. Lett. 106, 53116 (2015).

    Article  CAS  Google Scholar 

  108. V. D. Kugel, G. Rosenman, and D. Shur, J. Appl. Phys. 78, 5592 (1995).

    Article  CAS  Google Scholar 

  109. J. V. Vidal, A. V. Turutin, I. V. Kubasov, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 64, 1102 (2017).

    Article  Google Scholar 

  110. Rajaram D. Patil, Y. Chai, R. C. Kambale, et al., Appl. Phys. Lett. 102, 62909 (2013).

    Article  CAS  Google Scholar 

  111. X. Zhuang, M. L. C. Sing, C. Cordier, et al., IEEE Sens. J. 11, 2183 (2011).

    Article  Google Scholar 

  112. W. Yaojin, G. David, B. David, et al., J. Appl. Phys. 122, 84509 (2015).

    Google Scholar 

  113. C. Zhaoqiang, S. Huaduo, S. Weiliang, et al., Adv. Mater. 29, 1606022 (2017).

    Article  CAS  Google Scholar 

  114. Y. Wang, M. Li, D. Hasanyan, et al., Appl. Phys. Lett. 101, 92905 (2012).

    Article  CAS  Google Scholar 

  115. F. Cong, J. Jie, M. Jiashuai, et al., J. Phys. D 48, 465002 (2015).

    Article  CAS  Google Scholar 

  116. J. Gao, Y. Shen, Y. Wang, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1545 (2011).

    Article  Google Scholar 

  117. A. V. Turutin, J. V. Vidal, I. V. Kubasov, et al., Appl. Phys. Lett. 112, 262906 (2018).

    Article  CAS  Google Scholar 

  118. C. Fang, J. Ma, M. Yao, et al., J. Magn. Magn. Mater. 423, 106 (2017).

    Article  CAS  Google Scholar 

  119. A. V. Turutin, J. V. Vidal, I. V. Kubasov, et al., J. Phys. D 51, 214001 (2018).

    Article  CAS  Google Scholar 

  120. A. V. Turutin, J. V. Vidal, I. V. Kubasov, et al., J. Magn. Magn. Mater. 486, 165209 (2019).

    Article  CAS  Google Scholar 

  121. Y. Shen, J. Gao, L. Shen, et al., Sens. Actuators, A 171 (2), 63 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-12-50229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Turutin.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turutin, A.V., Kubasov, I.V., Kislyuk, A.M. et al. Ultra-Sensitive Magnetoelectric Sensors of Magnetic Fields for Biomedical Applications. Nanotechnol Russia 17, 261–289 (2022). https://doi.org/10.1134/S2635167622030223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622030223

Navigation