Skip to main content

Advertisement

Log in

Dual-stimulus magnetoelectric energy harvesting

  • Materials for Energy Harvesting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006).

    Google Scholar 

  2. S. Priya, J. Electroceram. 19, 165 (2007).

    Google Scholar 

  3. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013).

    Google Scholar 

  4. F.K. Shaikh, S. Zeadally, Renew. Sustain. Energy Rev. 55, 1041 (2016).

    Google Scholar 

  5. Y.K. Tan, S.K. Panda, IEEE Trans. Ind. Electron. 58, 4424 (2011).

    Google Scholar 

  6. Y. Hu, Y. Xu, Appl. Phys. Lett. 104, 053902 (2014).

    Google Scholar 

  7. S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007).

    Google Scholar 

  8. D. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2010).

    Google Scholar 

  9. J. Wu, H. Shi, T. Zhao, Y. Yu, S. Dong, Adv. Funct. Mater. 26, 7186 (2016).

    Google Scholar 

  10. H.G. Yeo, X. Ma, C. Rahn, S. Trolier-McKinstry, Adv. Funct. Mater. 26, 5940 (2016).

    Google Scholar 

  11. C.-B. Eom, S. Trolier-McKinstry, MRS Bull. 37, 1007 (2012).

    Google Scholar 

  12. Z. Chu, H. Shi, M. PourhosseiniAsl, J. Wu, W. Shi, X. Gao, X. Yuan, S. Dong, Sci. Rep. 7, 8592 (2017).

    Google Scholar 

  13. Z. Chu, H. Shi, W. Shi, G. Liu, J. Wu, J. Yang, S. Dong, Adv. Mater. 29, 1606022 (2017).

    Google Scholar 

  14. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009).

    Google Scholar 

  15. B.P. Manna, N.D. Simsb, J. Sound Vib. 319, 515 (2009).

    Google Scholar 

  16. G. Liu, P. Ci, S. Dong, Appl. Phys. Lett. 104, 032908 (2014).

    Google Scholar 

  17. J. Ryu, J.-E. Kang, Y. Zhou, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, J.-W. Kim, Y.-D. Kim, S. Priya, S.Y. Lee, S. Jeong, D.-Y. Jeong, Energy Environ. Sci. 8, 2402 (2015).

    Google Scholar 

  18. A. Khaligh, P. Zeng, C. Zheng, IEEE Trans. Ind. Electron. 57, 850 (2010).

    Google Scholar 

  19. P. Li, Y. Wen, J. Chaobo, L. Xinshen, IEEE Trans. Ind. Electron. 58, 2944 (2011).

    Google Scholar 

  20. S. Dong, J. Zhai, J.F. Li, D. Viehland, S. Priya, Appl. Phys. Lett. 93, 103511 (2008).

    Google Scholar 

  21. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, J. Am. Ceram. Soc. 91, 351 (2008).

    Google Scholar 

  22. O. Madelung, U. Rössler, M. Schulz, Eds., Group IV Elements, IV-IV and III-V Compounds, Part B—Electronic, Transport, Optical and Other Properties, Semiconductors (Springer, Berlin, 2001).

  23. S. Tumanski, Handbook of Magnetic Measurements (CRC Press, Boca Raton, FL, 2011).

    Google Scholar 

  24. S. Dong, J. Li, D. Viehland, J. Appl. Phys. 95, 5 (2004).

    Google Scholar 

  25. J. Lou, M. Liu, D. Reed, Y. Ren, N.X. Sun, Adv. Mater. 21, 4711 (2009).

    Google Scholar 

  26. Y. Zhou, D.J. Apo, S. Priya, Appl. Phys. Lett. 103, 192909 (2013).

    Google Scholar 

  27. Y. Zhou, D.J. Apo, M. Sanghadasa, M. Bichurin, V.M. Petrov, S. Priya, “Magnetoelectric Energy Harvester,” in Composite Magnetoelectrics, G. Srinivasan, S. Priya, N.X. Sun, Eds. (Woodhead Publishing, Cambridge, UK, 2015), chap. 7, pp. 161–207.

  28. S.-G. Kim, S. Priya, I. Kanno, MRS Bull. 37, 1039 (2012).

    Google Scholar 

  29. J.T. Lin, B. Lee, B. Alphenaar, Smart Mater. Struct. 19, 045012 (2010).

    Google Scholar 

  30. A. Hajati, S.G. Kim, Appl. Phys. Lett. 99, 083105 (2011).

    Google Scholar 

  31. B. Marinkovic, H. Kosera, Appl. Phys. Lett. 94, 103505 (2009).

    Google Scholar 

  32. J. Yang, Y. Wen, P. Li, X. Dai, Sens. Actuators A Phys. 168, 358 (2011).

    Google Scholar 

  33. M. Li, Y. Wen, P. Li, J. Yang, X. Dai, Sens. Actuators A Phys. 166, 102 (2011).

    Google Scholar 

  34. X. Bai, Y. Wen, J. Yang, P. Li, J. Qiu, Y. Zhu, J. Appl. Phys. 111, 07A938 (2012).

    Google Scholar 

  35. J. Yang, Y. Wen, P. Li, X. Yue, Q. Yu, X. Bai, Appl. Phys. Lett. 103, 243903 (2013).

    Google Scholar 

  36. Z. Lin, J. Chen, X. Li, J. Li, J. Liu, Q. Awais, J. Yang, Appl. Phys. Lett. 109, 253903 (2016).

    Google Scholar 

  37. R.C. Kambale, J.-E. Kang, W.-H. Yoon, D.-S. Park, J.-J. Choi, C.-W. Ahn, J.-W. Kim, B.-D. Hahn, D.-Y. Jeong, Y.-D. Kim, S. Dong, J. Ryu, Energy Harvest. Syst. 1, 3 (2014).

    Google Scholar 

  38. D.R. Patil, Y. Zhou, J.-E. Kang, N. Sharpes, D.-Y. Jeong, Y.-D. Kim, K.H. Kim, S. Priya, J. Ryu, APL Mater. 2, 46102 (2014).

    Google Scholar 

  39. R.C. Kambale, W.-H. Yoon, D.-S. Park, J.-J. Choi, C.-W. Ahn, J.-W. Kim, B.-D. Hahn, D.-Y. Jeong, B.C. Lee, G.-S. Chung, J. Ryu, J. Appl. Phys. 113, 204108 (2013).

    Google Scholar 

  40. R. Gupta, M. Tomar, S. Rammohan, R.S. Katiyar, V. Gupta, Appl. Phys. Lett. 109, 193901 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51772005, 51132001); Beijing Municipal Science and Technology Projects (Grant Nos. Z131100003213020, Z151100003715003).V.A. would also like to acknowledge support from the Department of Science and Technology, Government of India under the INSPIRE Faculty scheme. J.R. would like to acknowledge support from the National Research Foundation of Korea (Grant No. NRF-2016R1A2B4011663), Korea Institute of Materials Science Internal R&D Program (Grant No. PNK5061), National Research Council of Science and Technology (NST) grant by the Korean government (MSIP) (No. CAP-17-04-KRISS), and the US Office of Naval Research Global (Grant No. N62909-16-1-2135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqiang Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Z., Annapureddy, V., PourhosseiniAsl, M.J. et al. Dual-stimulus magnetoelectric energy harvesting. MRS Bulletin 43, 199–205 (2018). https://doi.org/10.1557/mrs.2018.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.31

Navigation