Skip to main content
Log in

Self-Organization of the Composition of AlxGa1 – xN Films Grown on Hybrid SiC/Si Substrates

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The phenomenon of self-organized change in the composition of epitaxial layers of the AlxGa1 ‒ xN solid solution during their growth by chloride-hydride epitaxy on SiC/Si(111) hybrid substrates is discovered using spectral ellipsometry, Raman spectroscopy, and scanning microscopy with an X-ray spectrometer. It is found that interlayers or domains consisting of AlGaN of stoichiometric composition appear during the growth of AlxGa1 – xN layers with a low (about 11–24%) content of Al. A qualitative model is proposed, according to which self-organization in composition occurs due to the effect of two processes on the growth kinetics of the AlxGa1 – xN film. The first process is associated with the competition of two chemical reactions proceeding at different rates. One of these reactions is the formation of AlN; the second reaction is the formation of GaN. The second process, closely related to the first one, is the appearance of elastic compressive and tensile stresses during the growth of AlxGa1 – xN films on SiC/Si(111). Both processes influence each other, which leads to a complex pattern of aperiodic variation of the composition over the thickness of the film layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. A. Kukushkin and Sh. Sh. Sharofidinov, Phys. Solid State 61, 2342 (2019). http://journals.ioffe.ru/articles/viewPDF/48549.

    Article  ADS  Google Scholar 

  2. S. Yu. Karpov, N. I. Podolskaya, I. A. Zhmakin, and A. I. Zhmakin, Phys. Rev. B 70, 235203 (2004). https://doi.org/10.1103/Phys.Rev.B70.235203

    Article  ADS  Google Scholar 

  3. V. N. Jmerik, A. M. Mizerov, T. V. Shubina, A. V. Sakharov, A. A. Sitnikova, P. S. Kop’ev, S. V. Ivanov, E. V. Lutsenko, A. V. Danilchyk, N. V. Rzheutskii, and G. P. Yablonskii, Semiconductors 42, 1420 (2008). https://journals.ioffe.ru/articles/viewPDF/6716.

    Article  ADS  Google Scholar 

  4. S. A. Kukushkin and A. V. Osipov, J. Phys. D 47, 313001 (2014). https://doi.org/10.1088/0022-3727/47/31/313001

    Article  ADS  Google Scholar 

  5. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014). http://journals.ioffe.ru/articles/viewPDF/40674.

    Article  ADS  Google Scholar 

  6. A. V. Redkov, A. V. Osipov, and S. A. Kukushkin, Phys. Solid State 57, 2524 (2015).

    Article  ADS  Google Scholar 

  7. A. Mizerov, V. Jmerik, M. Yagovkina, S. Troshkov, P. Kop’ev, and S. Ivanov, J. Cryst. Growth 323, 68 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.136

    Article  ADS  Google Scholar 

  8. S. A. Kukushkin and A. V. Osipov, Tech. Phys. Lett. 43, 631 (2017). http://journals.ioffe.ru/articles/viewPDF/44815. https://doi.org/10.21883/PJTF.2017.13.44815.16625

    Article  ADS  Google Scholar 

  9. I. P. Pronin, S. A. Kukushkin, V. V. Spirin, S. V. Senkevich, E. Yu. Kaptelov, D. M. Dolgintsev, V. P. Pronin, D. A. Kiselev, and O. N. Sergeeva, Mater. Phys. Mech. 30, 20 (2017). http://www.ipme.ru/e-journals/MPM/no_13017/MPM130_02_pronin.pdf.

  10. W. S. Gorsky, Phys. Z. Sow. 8, 457 (1935).

    Google Scholar 

  11. A. V. Tumarkin, S. A. Kukushkin, A. V. Osipov, A. S. Ankudinov, and A. A. Odinets, Phys. Solid State 57, 815 (2015). https://journals.ioffe.ru/articles/41614. https://doi.org/10.1134/S1063783415040307

    Article  ADS  Google Scholar 

  12. S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, E. V. Konenkova, and V. N. Panteleev, Phys. Solid State 59, 674 (2017).

    Article  ADS  Google Scholar 

  13. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 36, 687 (1994). https://journals.ioffe.ru/articles/16473.

    ADS  Google Scholar 

  14. M. Kuball, Surf. Interface Anal. 31, 987 (2001). https://doi.org/10.1002/sia.1134

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the unique scientific setup “Physics, chemistry and mechanics of crystals and thin films” of Institute of Machine Science Problems of Russian Academy of Sciences, St. Petersburg.

Funding

The work was carried out as a part of the project of the Russian Science Foundation no. 20-12-00193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Sharofidinov, S.S., Osipov, A.V. et al. Self-Organization of the Composition of AlxGa1 – xN Films Grown on Hybrid SiC/Si Substrates. Phys. Solid State 63, 442–448 (2021). https://doi.org/10.1134/S1063783421030100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421030100

Keywords:

Navigation