Skip to main content
Log in

Preparation of Atomically Clean and Structurally Ordered Surfaces of Epitaxial CdTe Films for Subsequent Epitaxy

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

An atomically clean and structurally ordered surface of the CdTe layer of a (013)-oriented GaAs/ZnTe/CdTe substrate after storage in air is obtained by treatment in isopropyl alcohol saturated with hydrochloric-acid vapors, with subsequent thermal annealing in ultrahigh vacuum. It is shown that chemical treatment of the CdTe surface results in the removal of native oxides and in enrichment of the surface with an elemental Te layer. During heating in vacuum, two stages of change in the state of the surface (at ~125 and ≤250°C) are observed. At the temperature T > 250°C, elemental tellurium is desorbed, and a Te-stabilized (1 × 1) CdTe(013) structure is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Rogalski, Infrared and Terahertz Detectors (Chapman Hall/CRC, Boca Raton, FL, 2019).

    Book  Google Scholar 

  2. P. Liu, J. R. Williams, and J. J. Cha, Nat. Rev. Mater. 4, 479 (2019).

    Article  ADS  Google Scholar 

  3. C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 1 (2011).

    Article  Google Scholar 

  4. E. B. Olshanetsky, Z. D. Kvon, S. S. Kobylkin, D. A. Kozlov, N. N. Mikhailov, S. A. Dvoretskii, and J. C. Portal, JETP Lett. 93, 526 (2011).

    Article  ADS  Google Scholar 

  5. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 318, 766 (2007).

    Article  ADS  Google Scholar 

  6. Z. D. Kvon, D. A. Kozlov, E. B. Olshanetsky, G. M. Gusev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Usp. 63, 629 (2020).

    Article  ADS  Google Scholar 

  7. A. K. Kaveev, V. A. Golyashov, A. E. Klimov, E. F. Schwier, S. M. Suturin, A. S. Tarasov, and O. E. Tereshchenko, Mater. Chem. Phys. 240, 122134 (2020).

    Article  Google Scholar 

  8. A. S. Tarasov, V. A. Golyashov, D. V. Ishchenko, I. O. Akhundov, A. E. Klimov, V. S. Epov, A. K. Kaveev, V. N. Sherstyakova, S. P. Suprun, and O. E. Tere-shchenko, Optoelectron., Instrum. Data Process. 56, 553 (2020).

    Article  ADS  Google Scholar 

  9. V. S. Varavin, S. A. Dvoretskii, N. N. Mikhailov, V. G. Remesnik, I. V. Sabinina, Yu. G. Sidorov, V. A. Shvets, M. V. Yakushev, and A. V. Latyshev, Optoelectron., Instrum. Data Process. 56, 456 (2020).

    Article  ADS  Google Scholar 

  10. H. Zogg, C. Maissen, J. Masek, T. Hoshino, S. Blunier, and A. N. Tiwari, Semicond. Sci. Technol. 6, 36 (1991).

    Article  Google Scholar 

  11. V. N. Ovsyuk, G. L. Kuryshev, and Yu. G. Sidorov, Matrix Photodetectors of Infrared Range (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  12. N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, Optoelectron., Instrum. Data Process. 53, 303 (2017).

    Article  ADS  Google Scholar 

  13. A. A. Velichko, V. A. Ilyushin, N. I. Filimonova, and D. I. Ostertak, Nauch. Vestn. NGTU 25, 131 (2006).

    Google Scholar 

  14. S. Ma, C. Guo, C. Xiao, F. Wu, M. Smidman, Y. Lu, H. Yuan, and H. Wu, Adv. Funct. Mater. 28 (2018).

  15. I. G. Neizvestnyi, D. V. Ishchenko, I. O. Akhundov, S. P. Suprun, and O. E. Tereshchenko, Dokl. Phys. 65, 15 (2020).

    Article  ADS  Google Scholar 

  16. G. Springholz, A. Y. Ueta, N. Frank, and G. Bauer, Appl. Phys. Lett. 69, 2822 (1996).

    Article  ADS  Google Scholar 

  17. O. E. Tereshchenko, S. I. Chikichev, and A. S. Terekhov, J. Vac. Sci. Technol. A 17, 2655 (1999).

    Article  ADS  Google Scholar 

  18. O. E. Tereshchenko, D. Paget, P. Chiaradia, J. E. Bonnet, F. Wiame, and A. Taleb-Ibrahimi, Appl. Phys. Lett. 82, 4280 (2003).

    Article  ADS  Google Scholar 

  19. O. E. Tereshchenko, D. Paget, P. Chiaradia, E. Placidi, J. E. Bonnet, F. Wiame, and A. Taleb-Ibrahimi, Surf. Sci. 600, 3160 (2006).

    Article  ADS  Google Scholar 

  20. O. E. Tereshchenko, Appl. Surf. Sci. 252, 7684 (2006).

    Article  ADS  Google Scholar 

  21. A. E. Klimov, A. N. Akimov, I. O. Akhundov, V. A. Golyashov, D. V. Gorshkov, D. V. Ishchenko, G. Yu. Sidorov, S. P. Suprun, A. S. Tarasov, V. S. Epov, and O. E. Tereshchenko, Semiconductors 53, 1182 (2019).

    Article  ADS  Google Scholar 

  22. S. A. Dvoretsky, N. N. Mikhailov, D. G. Ikusov, V. A. Kartashev, A. V. Kolesnikov, I. V. Sabinina, Yu. G. Sidorov, and V. A. Shvets, in Methods for Film Synthesis and Coating Procedures, Ed. by L. Nanai, A. Samantara, S. Ratha, and L. Fabian (London, InTech, 2020), p. 49.

    Google Scholar 

  23. V. A. Shvets, N. N. Mikhailov, and S. A. Dvoretskii, Optoelectron., Instrum. Data Process. 47, 426 (2011).

    Article  Google Scholar 

  24. A. J. Ricco, H. S. White, and M. S. Wrighton, J. Vac. Sci. Technol. A 2, 910 (1984).

    Article  ADS  Google Scholar 

  25. S. S. Choi and G. Lucovsky, J. Vac. Sci. Technol. B 6, 1198 (1988).

    Article  Google Scholar 

  26. Practical Surface Analysis by Auger- and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Wiley, New York, 1983).

    Google Scholar 

  27. S. Schreyeck, K. Brunner, L. W. Molenkamp, G. Karczewski, M. Schmitt, P. Sessi, M. Vogt, S. Wilfert, A. B. Odobesko, and M. Bode, Phys. Rev. Mater. 3, 1 (2019).

    Google Scholar 

  28. M. V. Yakushev, D. V. Brunev, and Y. G. Sidorov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 64 (2010).

    Article  Google Scholar 

  29. V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, N. N. Mikhailov, and Y. G. Sidorov, J. Cryst. Growth 159, 1161 (1996).

    Article  ADS  Google Scholar 

  30. V. S. Varavin, S. A. Dvoretskii, N. N. Mikhailov, V. G. Remesnik, I. V. Sabinina, Yu. G. Sidorov, V. A. Shvets, M. V. Yakushev, and A. V. Latyshev, Optoelectron., Instrum. Data Process. 56, 456 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The AFM measurements were performed using equipment of the Multiple-access center “Nanostructures”.

We thank V.G. Remesnik and V.S. Varavin for carrying out measurements to determine the composition and electrical parameters of CdHgTe HESs.

Funding

The part of the study concerned with the MBE growth of CdHgTe HESs and the ellipsometry measurements was supported by the Russian Foundation for Basic Research, project no. 18-29-20053. The part of the study concerned with the growth of PbSnTe films was supported by the Russian Foundation for Basic Research, project no. 20-32-90154. The part of the study concerned with the XPS measurements was supported by the Russian Foundation for Basic Research and Novosibirsk region, project no. 20-42-543015. The part of the study concerned with the AFM measurements was supported by the Russian Science Foundation, project no. 18-72-10063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tarasov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, A.S., Mikhailov, N.N., Dvoretsky, S.A. et al. Preparation of Atomically Clean and Structurally Ordered Surfaces of Epitaxial CdTe Films for Subsequent Epitaxy. Semiconductors 55 (Suppl 1), S62–S66 (2021). https://doi.org/10.1134/S1063782621090220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621090220

Keywords:

Navigation