Skip to main content
Log in

Molecular Beam Epitaxy of CdHgTe: Current State and Horizons

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

We provide a review of the current state, problems and their solutions, and potential possibilities to develop the technology of the Molecular Beam epitaxy (MBE) to obtain CdHgTe structures on various substrates for infrared detectors. We present the data about MBE supervacuum units control tools for growth processes, collected according to used substrates preparation processes for substrate surfaces, growth of buffer layers on alternating substrates, and growth and alloying of CdHgTe layers. We present main defects of structures (such as line defects and macrodefects) and their least achieved concentration levels limiting the quality of detectors. We consider the data about problems of the external alloying of CdHgTe layers by dopants and the obtained electrophysical parameters of such layers. We provide photoelectric parameters of IR-detectors, close to theoretical ones and showing that the MBE technology is ready to produce CdHgTe/Si structures on six-inch diameters. We demonstrate results of the research and development of the growth and alloying of CdHgTe structures on GaAs substrates and Si substrates of 76.2-mm diameters, implemented at the Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. W. D. Lawson, S. Nielsen, E. H. Putley, and A. S. Young, ‘‘Preparation and properties of HgTe and mixed crystals of HgTe–CdTe,’’ J. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6

    Article  ADS  Google Scholar 

  2. Innovative Solutions for Semiconductor Industry. 2020. https://riber.com. Cited June 29, 2020.

  3. Yu. G. Sidorov, S. A. Dvoretskiĭ, N. N. Mikhaĭlov, M. V. Yakushev, V. S. Varavin, and A. P. Antsiferov, ‘‘Molecular beam epitaxy of narrow-band Cd\({}_{x}\)Hg\({}_{1-x}\)Te. Equipment and technology,’’ J. Opt. Technol. 67, 31–36 (2000). https://doi.org/10.1364/JOT.67.000031

  4. M. F. Vilela, A. A. Buell, M. D. Newton, G. M. Venzor, A. C. Childs, J. M. Peterson, J. J. Franklin, R. E. Bornfreund, W. A. Radford, and S. M. Johnson, ‘‘Control and growth of middle wave infrared (MWIR) Hg\({}_{1-x}\)Cd\({}_{x}\)Te on Si by molecular beam epitaxy,’’ J. Electron. Mater. 34, 898–904 (2005). https://doi.org/10.1007/s11664-005-0039-z

    Article  ADS  Google Scholar 

  5. V. A. Shvets, N. N. Mikhailov, and S. A. Dvoretskii, ‘‘Growing of HgCdTe heterostructures with in situ ellipsometric control,’’ Optoelectron., Instrum. Data Process. 47, 426–435 (2011). https://doi.org/10.3103/S8756699011050220

    Article  Google Scholar 

  6. K. K. Svitashev, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, A. S. Mardezhov, I. E. Nis, V. S. Varavin, V. Liberman, and V. G. Remesnik, ‘‘The growth of high-quality MCT films by MBE using in situ ellipsometry,’’ Cryst. Res. Tech. 29, 931–936 (1994). https://doi.org/10.1002/crat.2170290703

  7. R. Triboulet, A. Tromson-Carli, D. Lorans, and T. Nguyen Duy, ‘‘Substrate issues for the growth of mercury cadmium telluride,’’ J. Electron. Mater. 22, 827–834 (1993). https://doi.org/10.1007/BF02817493

  8. S. Sivananthan, X. Chu, J. Reno, and J. P. Faurie, ‘‘Relation between crystallographic orientation and the condensation coefficients of Hg, Cd and Te during molecular beam epitaxial growth of Hg\({}_{1-x}\)Cd\({}_{x}\)Te and CdTe,’’ J. Appl. Phys. 60, 1359–1363 (1986). https://doi.org/10.1063/1.337310

    Article  ADS  Google Scholar 

  9. L. A. Almeida, M. Groenert, and J. H. Dinan, ‘‘Influence of substrate orientation on the growth of HgCdTe by molecular beam epitaxy,’’ J. Electron. Mater. 35, 1214–1218 (2006). https://doi.org/10.1007/s11664-006-0243-5

    Article  ADS  Google Scholar 

  10. R. J. Koestner and H. F. Schaake, ‘‘Kinetics of molecular beam epitaxial HgCdTe growth,’’ J. Vac. Sci. Technol., A 6, 2834–2839 (1988). https://doi.org/10.1116/1.575611

    Article  ADS  Google Scholar 

  11. A. Million, L. Di Cioccio, J. P. Gailliard, and J. Piaguet, ‘‘Molecular beam epitaxy of CdHgTe at D.LETI/LIR,’’ J. Vac. Sci. Technol., A 6, 2813–2819 (1988). https://doi.org/10.1116/1.575607

    Article  ADS  Google Scholar 

  12. V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, N. N. Mikhailov, and Yu. G. Sidorov, ‘‘Molecular beam epitaxy of high quality Hg\({}_{1-x}\)Cd\({}_{x}\)Te films with control of the composition distribution,’’ J. Cryst. Growth 159, 1161–1166 (1996). https://doi.org/10.1016/0022-0248(95)00845-4

    Article  ADS  Google Scholar 

  13. R. Sporken, F. Malengreau, J. Ghijsen, R. Caudano, S. Sivananthan, J. P. Faurie, T. van Gemmeren, and R. L. Johnson, ‘‘Si 2p core-level shifts at the CdTe/Si(100) interface,’’ Appl. Surf. Sci. 123/124, 462–466 (1998). https://doi.org/10.1016/S0169-4332(97)00486-8

    Article  ADS  Google Scholar 

  14. M. Jaime-Vasquez, M. Martinka, R. N. Jacobs, and M. Groenert, ‘‘In-situ spectroscopic study of the As and Te on the Si (112) surface for high-quality epitaxial layers,’’ J. Electron. Mater. 35, 1455–1460 (2006). https://doi.org/10.1007/s11664-006-0283-x

    Article  ADS  Google Scholar 

  15. S. Rujirawat, L. A. Almeida, Y. P. Chen, S. Sivananthan, and D. J. Smith, ‘‘High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy,’’ Appl. Phys. Lett. 71, 1810–1812 (1997). https://doi.org/10.1063/1.119406

    Article  ADS  Google Scholar 

  16. S. M. Johnson, A. A. Buell, M. F. Vilela, J. M. Peterson, J. B. Varesi, M. D. Newton, G. M. Venzor, R. E. Bornfreund, W. A. Radford, E. P. G. Smith, J. P. Rosbeck, T. J. De Lyon, J. E. Jensen, and V. Nathan, ‘‘HgCdTe/Si materials for long wavelength infrared detectors,’’ J. Electron. Mater. 33, 526–530 (2004). https://doi.org/10.1007/s11664-004-0041-x

    Article  ADS  Google Scholar 

  17. Y. Chen, S. Farrel, G. Brill, P. Wijewarnasuriya, and N. Dhar, ‘‘Dislocation reduction in CdTe/Si by molecular beam epitaxy through in-situ annealing,’’ J. Cryst. Growth 310, 5303–5307 (2008). https://doi.org/10.1016/j.jcrysgro.2008.09.023

    Article  ADS  Google Scholar 

  18. G. Brill, S. Farrell, Y. P. Chen, P. S. Wijewarnasuriya, M. V. Rao, J. D. Benson, and N. Dhar, ‘‘Dislocation reduction of HgCdTe/Si through ex situ annealing,’’ J. Electron. Mater. 39, 967–973 (2010). https://doi.org/10.1007/s11664-010-1142-3

    Article  ADS  Google Scholar 

  19. Yu. G. Sidorov, M. V. Yakushev, V. S. Varavin, A. V. Kolesnikov, E. M. Trukhanov, I. V. Sabinina, and I. D. Loshkarev, ‘‘Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates,’’ Phys. Solid State 57, 2151–2158 (2015). https://doi.org/10.1134/S1063783415110311

    Article  ADS  Google Scholar 

  20. S. Simingalam, G. Brill, P. Wijewarnasuriya, and M. V. Rao, ‘‘Low temperature, rapid thermal cycle annealing of HgCdTe grown on CdTe/Si,’’ J. Electron. Mater. 44, 1321–1326 (2015). https://doi.org/10.1007/s11664-014-3542-2

    Article  ADS  Google Scholar 

  21. P. S. Wijewarnasuriya, M. Zandian, D. B. Young, J. Waldrop, D. D. Edwall, W. V. Mclevige, D. Lee, J. Arias, and A. I. D’Souza, ‘‘Microscopic defects on MBE grown LWIR Hg\({}_{1-x}\)Cd\({}_{x}\)Te material and their impact on device performance,’’ J. Electron. Mater. 28, 649–653 (1999). https://doi.org/10.1007/s11664-999-0048-4

    Article  ADS  Google Scholar 

  22. I. V. Sabinina, A. K. Gutakovsky, Yu. G. Sidorov, S. A. Dvoretsky, and V. D. Kuzmin, ‘‘Defect formation during growth of CdTe (111) and HgCdTe films by molecular beam epitaxy,’’ J. Cryst. Growth 117, 238–243 (1992). https://doi.org/10.1016/0022-0248(92)90752-5

    Article  ADS  Google Scholar 

  23. E. Weiss, O. Klin, E. Benory, E. Kedar, and Y. Juravel, ‘‘Substrate quality impact on the carrier concentration of undoped annealed HgCdTe LPE layers,’’ J. Electron. Mater. 30, 756–761 (2001). https://doi.org/10.1007/BF02665868

    Article  ADS  Google Scholar 

  24. T. Aoki, Y. Chang, G. Badano, J. Zhao, C. Grein, S. Sivananthan, and D. J. Smith, ‘‘Electron microscopy of surface-crater defects on HgCdTe/CdZnTe(211)B epilayers grown by molecular beam epitaxy,’’ J. Electron. Mater. 32, 703–709 (2003). https://doi.org/10.1007/s11664-003-0056-8

    Article  ADS  Google Scholar 

  25. I. V. Sabinina, A. K. Gutakovsky, Yu. G. Sidorov, and A. V. Latyshev, ‘‘Nature of V-shaped defects in HgCdTe epilayers grown by molecular beam epitaxy,’’ J. Cryst. Growth 274, 339–346 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.053

    Article  ADS  Google Scholar 

  26. Mercury Cadmium Telluride. Growth, Properties and Application, Ed. by P. Capper, J. Garland (Wiley & Sons, Chichester, 2011). https://doi.org/10.1002/9780470669464

  27. J. P. Zanatta, P. Ferret, G. Theret, A. Million, M. Wolny, J. P. Chamonal, and G. Destefanis, ‘‘Heteroepitaxy of HgCdTe (211)B on Ge substrates by molecular beam epitaxy for infrared detectors,’’ J. Electron. Mater. 27, 542–545 (1998). https://doi.org/10.1007/s11664-998-0012-8

    Article  ADS  Google Scholar 

  28. J. Wenisch, D. Eich, H. Lutz, T. Schallenberg, R. Wollrab, and J. Ziegler, ‘‘MBE growth of MCT on GaAs substrates at AIM,’’ J. Electron. Mater. 41, 2828–2832 (2012). https://doi.org/10.1007/s11664-012-2113-7

    Article  ADS  Google Scholar 

  29. S. A. Dvoretsky, N. N. Mikhailov, D. G. Ikusov, V. A. Kartashev, A. V. Kolesnikov, I. V. Sabinina, Yu. G. Sidorov, and V. A. Shvets, ‘‘The growth of CdTe layer on GaAs substrate by MBE,’’ in Methods for Film Synthesis and Coating Procedures, Ed. by L. Nánai, A. Samantara, L. Fábián, and S. Ratha (InTechOpen, 2019). https://doi.org/10.5772/intechopen.85563

  30. F. Erdem Arkun, D. D. Edwall, J. Ellsworth, Sh. Douglas, M. Zandian, and M. Carmody, ‘‘Characterization of HgCdTe films grown on large-area CdZnTe substrates by molecular beam epitaxy,’’ J. Electron. Mater. 46, 5374–5378 (2017). https://doi.org/10.1007/s11664-017-5441-9

    Article  ADS  Google Scholar 

  31. M. Reddy, J. M. Peterson, T. Vang, J. A. Franklin, M. F. Vilela, K. Olsson, E. A. Patten, W. A. Radford, J. W. Bangs, L. Melkonian, E. P. G. Smith, D. D. Lofgreen, and S. M. Johnson, ‘‘Molecular beam epitaxy growth of HgCdTe on large-area Si and CdZnTe substrates,’’ J. Electron. Mater. 40, 1706–1716 (2011). https://doi.org/10.1007/s11664-011-1665-2

    Article  ADS  Google Scholar 

  32. J. Ziegler, J. Wenisch, R. Breiter, D. Eich, H. Figgemeier, P. Fries, H. Lutz, and R. Wollrab, ‘‘Improvements of MCT MBE growth on GaAs improvements of MCT MBE growth on GaAs,’’ J. Electron. Mater. 43, 2935–2940 (2014). https://doi.org/10.1007/s11664-014-3149-7

    Article  ADS  Google Scholar 

  33. Yu. G. Sidorov, A. P. Anciferov, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, I. V. Sabinina, V. G. Remesnik, D. G. Ikusov, I. N. Uzhakov, G. Yu. Sidorov, V. D. Kuzmin, S. V. Rihlicky, V. A. Shvets, A. S. Mardezov, E. V. Spesivcev, A. K. Gutakovskii, and A. V. Latyshev, ‘‘Molecular beam epitaxy of Cd\({}_{x}\)Hg\({}_{1-x}\)Te,’’ in Advances in Semiconductor Nanostructures. Growth, Characterization, Properties and Applications, Ed. by A. V. Latyshev, A. V. Dvurechenskii, and A. L. Aseev (Elsevier, 2017), pp. 297–323. https://doi.org/10.1016/B978-0-12-810512-2.00012-3

  34. J. P. Zanatta, G. Badano, P. Ballet, C. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J. P. Chamonal, A. Million, G. Destefanis, S. Mibord, E. Brochier, and P. Costa, ‘‘Molecular beam epitaxy growth of HgCdTe on Ge for third-generation infrared detectors,’’ J. Electron. Mater. 35, 1231–1236 (2006). https://doi.org/10.1007/s11664-006-0246-2

    Article  ADS  Google Scholar 

  35. M. Reddy, X. Jin, D. D. Lofgreen, J. A. Franklin, J. M. Peterson, T. Vang, N. Juanko, F. Torres, K. Doyle, A. Hampp, S. M. Johnson, and J. W. Bangs, ‘‘Demonstration of high-quality MBE HgCdTe on 8-inch wafers,’’ J. Electron. Mater. 48, 6040–6044 (2019). https://doi.org/10.1007/s11664-019-07246-y

    Article  ADS  Google Scholar 

  36. M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Yu. G. Sidorov, and A. V. Sorochkin, ‘‘HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,’’ Semiconductors 45, 385–391 (2011). https://doi.org/10.1134/S1063782611030250

    Article  ADS  Google Scholar 

  37. V. S. Varavin, V. V. Vasilyev, A. A. Guzev, S. A. Dvoretsky, A. P. Kovchavtsev, D. V. Marin, I. V. Sabinina, Yu. G. Sidorov, G. Yu. Sidorov, A. V. Tsarenko, and M. V. Yakushev, ‘‘CdHgTe heterostructures for new-generation IR photodetectors operating at elevated temperatures,’’ Semiconductors 50, 1626–1629 (2016). https://doi.org/10.1134/S1063782616120265

    Article  ADS  Google Scholar 

  38. P. S. Wijewarnasuriya, M. D. Lange, S. Sivananthan, and J. P. Faurie, ‘‘Carrier recombination in indium-doped HgCdTe(211)B epitaxial layers grown by molecular beam epitaxy,’’ J. Appl. Phys. 75, 1005–1009 (1994). https://doi.org/10.1063/1.356506

    Article  ADS  Google Scholar 

  39. P. A. Bakhtin, S. A. Dvoretskii, V. S. Varavin, A. P. Korobkin, N. N. Mikhailov, I. V. Sabinina, and Yu. G. Sidorov, ‘‘Effect of low-temperature annealing on electrical properties of \(n\)-HgCdTe,’’ Semiconductors 38, 1172–1175 (2004). https://doi.org/10.1134/1.1808823

    Article  ADS  Google Scholar 

  40. Owen K. Wu, D. M. Jamba, G. S. Kamath, G. R. Chapman, S. M. Johnson, J. M. Peterson, K. Kosai, and C. A. Cockrum, ‘‘HgCdTe molecular beam epitaxy technology: A focus on material properties,’’ J. Electron. Mater. 24, 423–429 (1995). https://doi.org/10.1007/BF02657943

    Article  Google Scholar 

  41. W. Lei, J. Antoszewski, and L. Faraone, ‘‘Progress, challenges, and opportunities for HgCdTe infrared materials and detectors,’’ Appl. Phys. Rev. 2, 041303 (2015). https://doi.org/10.1063/1.4936577

    Article  ADS  Google Scholar 

  42. C. H. Grein, H. Jung, R. Singh, and M. E. Flatté, ‘‘Comparison of normal and inverted band structure HgTe/CdTe superlattices for very long wavelength infrared detectors,’’ J. Electron. Mater. 34, 905–908 (2005). https://doi.org/10.1007/s11664-005-0040-6

    Article  ADS  Google Scholar 

  43. V. Ya. Aleshkin, A. A. Dubinov, S. V. Morozov, M. Ryzhii, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, ‘‘Interband infrared photodetectors based on HgTe–CdHgTe quantum-well heterostructures,’’ Opt. Mater. Express 8, 1349–1358 (2018). https://doi.org/10.1364/OME.8.001349

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dvoretskii.

Additional information

Translated by A. Muravnik

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varavin, V.S., Dvoretskii, S.A., Mikhailov, N.N. et al. Molecular Beam Epitaxy of CdHgTe: Current State and Horizons. Optoelectron.Instrument.Proc. 56, 456–469 (2020). https://doi.org/10.3103/S8756699020050143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050143

Keywords:

Navigation